

Since 1965, our success has been a result of this simple business strategy:

- Understanding Customer Requirements.
- Providing Outstanding Service and Support.
- Producing High Quality Technical Materials and Equipment.
- Solving Difficult Technical Problems.

CONTENTS

Technica	I Bulletin	Page No.
A1	Technical Ceramics Overview	2
A1-S1	Machinable Ceramics	4
A1-S2	Dense Ceramics	6
A1-S3	Dense Ceramics—BN Composites	7
A2-S1	High Temperature Ceramic Adhesives	8
A2-S2	High Temperature Graphite Adhesives	14
A3	High Temperature Ceramic-Metallic Pastes	16
A4	High Temperature Potting & Casting Materials	18
A5-S1	High Temperature Specialized Coatings & Sealants	22
A5-S2	High Temperature High Emissivity Coatings	25
A5-S2A	High Temperature High Emissivity Coatings	27
A5-S3	High Temperature Thermal Spray Sealants	30
A5-S4	High Temperature Coatings for Ceramics, Glass & Quartz	32
A5-S5	High Temperature Refractory Coatings	34
A6-S1	Corrosion Resistant Epoxy & Urethane Coatings	36
A6-S2	High Temperature Silicone-Polyester Coatings	38
A6-S3	High Temperature Silicone Resin Coatings	40
A6-S3A	High Temperature Polysiloxane Coatings	42
A6-S4	High Temperature Silicone Emulsion Coatings	44
A6-S5	Ultra High Temperature Ceramic Coatings	46
A7	High Performance Epoxies	48
A8-S1	Electrically & Thermally Conductive Adhesives & Coatings .	50
A8-S2	Electrically & Thermally Conductive Greases	52
A9	Mounting Adhesives	53
A10	High Temperature Tapes	57
A11	High Temperature Inorganic Binders	58
A12	Dispensing Tools & Mixer	60
E1	Accu-Coat™ Screen Printers	62
E2	Econo-Heat™ High Temperature Furnaces	64

Aremco's advanced material division is a leader in the development and production of technical ceramics, adhesives, coatings, sealants and potting compounds for applications to 3200 °F. These materials are used throughout industry in the design of sensors, electrical components and analytical instruments. Industries served include automotive, aerospace, chemical processing, metallurgical, power generation and semiconductor.

TECHNICAL CERAMICS OVERVIEW

Technical Bulletin A1

TYPICAL APPLICATIONS

Aerospace

Gas Nozzles, Thermal Insulators, Space Mirrors, and Nose Cones.

Automotive

Diesel Port Liners, Manifold Insulation, Catalyst Support Systems, Flow Separator Housings, Regenerator Cores, Turbine Nozzles.

Electrical

Connector Housings, Heater And Resistor Supports, Washers, Inserts & Stand-Offs, Instrument and Appliance Insulators, Coil Forms and Bobbins.

Electronics

Wafer Chucks, Insulators, Vacuum Tube Structures, Microwave Housings, Arc Barriers, X-Ray Equipment, and PVD Applications.

Heat Treating

Brazing and Carburizing Fixtures, Induction Heating Tubes, Furnace and Tooling Insulation, Guides, Kiln Furniture, Welding Jigs, Hot Forming Dies.

Metallurgical

Molten Metal Crucibles, Nozzles, Troughs, Liners, Transfer Rollers, Structural Parts, Filters, Thermocouple Sheaths, Permanent Molds.

Petrochemical

High Temperature Corrosion and Wear-Resistant Components.

Plastics

Hot Die Parts for Thermoplastic Forming Equipment.

Aremco offers a wide range of full-fired and machinable ceramics for applications in the aerospace, automotive, electrical, heat-treating, metallurgical, semiconductor industries, and more.

CERAMIC GRADES

Machinables

502-600 Mica Glass-Ceramic 502-800 Macor Glass-Ceramics 502-900 Calcium Silicate

502-1100-UF Aluminum-Silicate, Un-Fired

502-1400-BF Aluminum Oxide, Bisque-Fired, 96%

502-1600 Boron Nitride, 99%

Full-Fired, Dense

502-676 Magnesium Oxide, 99.4% 502-1100-FF Aluminum-Silicate, Full-Fired 502-1400-96 Aluminum Oxide, 96% 502-1400-998 Aluminum Oxide, 99.8% 502-1835 Aluminum Nitride, 98%

502-1900-MSZ Zirconium Oxide, Magnesium Stabilized 502-1900-YTZP Zirconium Oxide, Yttria Stabilized

BN Composites

502-1810 Boron Nitride-Aluminum Oxide 502-1820 Boron Nitride-Aluminum Nitride 502-1830 Boron Nitride-Zirconium Oxide

Additional ceramics including Silicon Carbide and Silicon Nitride and custom ceramic formulations are available upon request. Comprehensive precision production services include isostatic pressing, injection molding, and diamond and laser machining.

MACHINABLE GRADES

502-600 Glass-Ceramic: Recommended for high dielectric and mechanical strength requirements and temperatures to 1100 °F (593 °C). Used for high voltage insulators, lamp housings, insulation sleeves and washers, thermal switches, and radiation parts. Readily machined and no firing required. Plates are available from $\frac{1}{2}$ " to 1" thick; rods from $\frac{1}{2}$ " to 1" diameter.

502-800 Macor Glass-Ceramic: Recommended for temperatures to 1472 °F (800 °C) and peaks up to 1832 °F (1000 °C). Demonstrates low thermal conductivity, high strength, high electrical insulation, zero porosity, non-wetting, and coefficient of thermal expansion similar to most metals and sealing glasses. Machines to tight tolerances up to 0.0005", surface finish of less than 20 μ in, and polishes to a smoothness of 0.5 μ in. Used for ultra high vacuum, aerospace, nuclear, welding, fixturing, and medical applications. Readily machined and no firing required. Bars, disks, rods and plates are available from $\frac{1}{160}$ thick up to 12" diameter.

502-900 Calcium Silicate (CS-85): Structural insulation that combines high strength and excellent thermal insulating characteristics for use in heat treating, fire protection, and electrical applications. Also ideal for direct contact with nonferrous metals. Machines easily and is available in $\frac{1}{4}$ " to 3" thick sheets \times 4' \times 8'.

502-1100-UF Alumino-Silicate, Unfired (Lava): Machined easily to close tolerances and can be used as-is or fired to increase temperature resistance and improve mechanical strength. Used for prototyping and small production runs of electrical and thermal insulators and brazing and heat-treating fixtures. Standard plates from ¼" to 1" thick × 12" × 12"; rods from ¼" to 4" diameter × 12"; bars from 1" × 1" to 4" × 4" × 12".

502-1400-BF Aluminum Oxide, 96%, Partially Fired: Partially Fired alumina is machined easily to close tolerances and can be used as-is or fired to increase mechanical and thermal properties. This ceramic offers excellent corrosion, abrasion, wear, and electrical and thermal shock resistance. Used for producing guides, fixtures, nozzles, pump liners, shafts, valve seats, and more. Plates are available from $\frac{1}{4}$ " to $\frac{3}{4}$ " thick × 6" × 6"; rods from $\frac{1}{4}$ " to 3" diameter × 10" long.

502-1600 Boron Nitride, 99%: Hot-pressed boron nitride provides high thermal conductivity, electrical insulation, and low coefficient of thermal expansion. Grades are non-reactive with molten salts, aluminum and other metals. Easily machined and available in plates from $\frac{1}{4}$ " to 1" thick; rods from $\frac{1}{4}$ " to 3" diameter by 12" long, and bars from $\frac{1}{4}$ " × $\frac{1}{4}$ " to 2" × 2".

FULL-FIRED, DENSE CERAMICS

502-676 Magnesium Oxide: This is a high density, fine grain, 99.38% magnesium oxide fabricated into thinwalled crucibles from 1" to 6" diameter and 1" to 10" high for applications to 3270 °F (1800 °C). Used for processing beta-alumina, metal alloys, piezoelectrics, and superconductors.

502-1100-FF Alumino-Silicate, Full-Fired (Lava): Offers higher temperature resistance and improved mechanical strength over 502-1100-UF. Used for prototyping and small production runs of electrical and thermal insulators, such as sleeves and washers, and brazing and heat-treating fixtures. Recommended for producing insulators, standoffs, feed-thrus, furnace carriers, and brazing fixtures.

502-1400-96 Alumina, Full-Fired, 96%: High strength aluminum oxide offers excellent corrosion, abrasion, wear, and electrical and thermal shock resistance. Used for producing guides, fixtures, nozzles, pump liners, shafts, valve seats, and more.

502-1400-998 Alumina, Full-Fired, 99.8%: Higher strength, higher purity aluminum oxide ideal for metallurgical applications in which sensitivity to impurities may exist.

502-1835 Aluminum Nitride, Full-Fired, 98%: High purity aluminum nitride offers extremely high thermal conductivity and excellent electrical insulation properties. Offers a low thermal expansion similar to silicon and excellent thermal shock, oxidation, corrosion, and abrasion resistance. Ideal for use in thermal management and electrical applications.

502-1900-MSZ Magnesia Partially Stabilized Zirconia:

This grade offers the highest level of fracture toughness of all the zirconia materials and far exceeds that of aluminum oxide. Features include excellent fracture, corrosion, thermal shock, and wear resistance. Used for pump parts, valve components, bearings, and wear linings.

502-1900-YTZP Yttria Stabilized Zirconia: This grade offers the highest flexural strength of all the zirconia materials. The fine grain size lends itself to be used in cutting tools where a very sharp edge can be achieved and maintained due to its high wear resistance. Also provides excellent mechanical strength, corrosion and thermal shock resistance, impact toughness, and very low thermal conductivity. Used for structural components, wear parts, fiber optic ferrules and sleeves, oxygen sensors, solid oxide fuel cells.

BORON NITRIDE COMPOSITES

502-1810 BN-Al_2O_3: Hot-pressed BN-Al $_2$ O $_3$ demonstrates good mechanical, thermal conductivity and electrical properties compared to BN. For use at temperatures to 1000 °C in air and 1700 °C in a vacuum or inert atmosphere. Ideal for producing gas atomization nozzles for the thermal spray industry.

502-1820 BN-AIN: Hot-pressed BN-AIN demonstrates high thermal conductivity and electrical resistivity, and good mechanical properties compared to BN. For use at temperatures to 1000 °C in air and 1800 °C in a vacuum or inert atmosphere. Ideal for applications requiring high thermal conductivity and electrical insulation in the semiconductor industry.

502-1830 BN-ZrO₂: Hot-pressed BN-ZrO₂ demonstrates the highest mechanical strength of all BN composites. Ideal for metallurgical/foundry applications for producing molds, molten liquid nozzles, and continuous casting separation rings.

MACHINABLE CERAMICS

Technical Bulletin A1-S1

502-800

502-1100-FF

502-1600

502-600 502-1100-UF

MACHINABLE CERAMICS

Material Properties	502-600	502-800	502-900	502-1100-UF	502-1100-FF	502-1400-BF	502-1600 ¹
Composition-Purity	Glass Ceramic	Macor Glass Ceramic	CS-85 Calcium Silicate	Alumino-Silicate Un-Fired	Alumino-Silicate Full-Fired	Alumina, 96% Bisque-Fired	Boron Nitride, 99%
Thermal Properties							
Max Use Temperature							
Oxidizing, °F, (°C)	1100 (593)	1472 (800)	1800 (1000)	1000 (537)	2100 (1150)	2600 (1427)	1650 (900)
Vacuum, °F, (°C)	1100 (593)	1472 (800)	1800 (1000)	1000 (537)	2100 (1150)	2600 (1427)	3270 (1800)
Inert, °F, (°C)	1100 (593)	1472 (800)	1800 (1000)	1000 (537)	2100 (1150)	2600 (1427)	3990 (2200)
Coefficient Thermal Expansion, in/in/°F x 10-6 (°C)	5.8 (10.5)	7.0 (12.6)	_	2.5 (4.5)	2.9 (5.2)	3.5 (6.3)	0.2 (0.3)
Thermal Conductivity, W/m-K	1.3	1.5	0.3	1.6	1.3	4.3	50
Mechanical Properties							
Compressive Strength, psi (MPa)	32,000 (221)	50,000 (345)	10,300 (71)	12,000 (83)	25,000 (172)	9,000 (62)	12,300 (85)
Flexural Strength, psi (MPa)	11,000 (72.9)	13,600 (94)	3,000 (21)	4,000 (28)	10,000 (69)	4,000 (28)	5,075 (35)
Hardness, Rockwell A	47	48	_	39	45	42	19
Electrical Properties							
Volume Resistivity, ohm-cm	1 × 10 ¹²	1 × 10 ¹⁷	4.5 × 10 ¹²	1 × 10 ¹⁴	1 × 10 ¹⁴	1 × 10 ¹⁴	> 1 × 10 ¹⁴
Dielectric Strength, volts/mil	380	785	61	80	100	80	865
Dielectric Loss, 1 MHz	0.012	~0.005	_	0.06	0.053	0.003	< 0.0002
Dielectric Constant, 1 MHz	6.8	~6.0	_	5.8	5.3	5.5	4
Physical Properties							
Density, g/cc	2.80	2.52	1.36	2.60	2.30	3.00	2.00
Water Absorption, %	0.0	0.0	_	2.5	2.3	25	_

 $^{^* \}text{Measurements taken at 25 °C. Additional data at elevated temperatures may be available upon request.}$

MACHINING GUIDELINES

Fixturing

Hold parts carefully to prevent chipping or cracking. Place soft paper sheet in between ceramic and gripping jaws as needed. Support plates for drilling or milling operations using a soft backup block and mounting adhesive such as Aremco's Crystalbond 509 or 590 (refer to Technical Bulletin A9). Support cylinders using an internal metal sleeve. Do not use pointed screws to hold parts.

Lubricant

A low concentrate water-soluble lubricant is recommended for 502-600 and 502-800. Dry machining is recommended for 502-1100-UF, 502-1400-BF, 502-1600-99 because these ceramics have high open porosity and absorb water readily.

Cutting

Use sharp cutting tools only as ceramics are abrasive and dull cutters may cause localized heating that leads to chipping. Carbide tools (Titanium coated or Tungsten) and/or bonded diamond wheels are preferred but high-speed tools can be used for short runs. Cut downwards into the work, never up from the bottom. Maintain speeds from 2000–2500 rpm and advance the cut by feel.

Drilling

Solid carbide drills, preferably with micro-grain carbide, will give best results. Do not drill thru in order to avoid chipping. For best results, work from one side, then rotate piece and work from the other side. Otherwise, allow for $\frac{1}{6}$ of extra material on drill break-thru side to allow for grinding cleanup. For large quantities, accurate two-sided hardened bushed drill jigs will provide accurate results. The drill should be advanced slowly by $\frac{1}{4}$ per turn.

Drill Size	Spindle Speed*	Feed Rate	
1/4"	300-2000 rpm	.003005	
1/2"	250–1200 rpm	.004007	
3/4"	200-700 rpm	.005010	
1"	100-300 rpm	.006012	

The higher end of the speed range is recommended for most products except 502-800 Macor

Grindina

Use silicon carbide resin-bonded wheels for surface grinding at speeds recommended by the wheel manufacturer. Use a soft, coarse-grained wheel for heavy grinding. Use 1% soluble oil solution to extend life of grinding wheels. Use a 35-grit Blanchard-Besley type grinder for rough heavy grind; use a 60–80-grit wheel for surface grinders.

Millina

Micro-grain Carbide end mills are recommended.

Drill Size	Spindle Speed
1/4"	< 1000 rpm
1/2"	< 800 rpm
3/4"	< 600 rpm
1"	< 400 rpm

Depth of Cut .050–.070" per cut **Feed Rate** 3" per minute

Slotting

Slotting may be accomplished using a metal-bonded diamond or silicon carbide wheel on a surface grinder for slots up to 0.050". Alternatively, a carbide end-mill can be used making small cuts up to 0.025" with plenty of lubricant.

Tapping

Use sharp tungsten carbide tool bits. For internal threads, make clearance holes slightly larger than standard tap drill recommendations. Chamfer both sides of hole prior to threading to minimize chipping. Run the tap in one direction only as turning the tap back and forth can cause chipping. Continuously flush with air, water or coolant to clear chips and dust from the tap.

Cleaning

When coolant is used, bake out parts at 200-250 °F for 1-2 hours to remove residual moisture. Remove any discoloration caused by the lubricant by clean firing up to 1000 °F.

502-1100-UF Unfired—Machining & Firing Notes

Typical tolerances after firing are \pm 1% or \pm 0.005" whichever is greater. Tighter tolerances can be achieved by wet grinding after firing. Machine all dimensions 1–2% undersize to allow for expansion during firing. All dimensions including centered and off-centered internal holes will increase by this percentage after firing. Maximum recommended cross-sectional thickness is 3%". Hollow cut or drill holes thru the unfired ceramic to maintain a 3%" maximum cross-section. When it is necessary to exceed 3%", do not exceed 5%" and the rate of firing should be slowed.

Bake at 200 °F for two hours to remove moisture and increase temperature at a rate of 200 °F per hour maximum (slower for thicker sections) to 1100 °F. Soak at 1100 °F for six hours, then increase temperature at a rate of 200 °F per hour to 2050 °F and soak for 30 minutes for each $\frac{1}{4}$ " of cross-section (eg. soak a $\frac{1}{2}$ " thick part for one hour). Turn off furnace and allow cooling to below 150 °F before removing parts.

502-1400-BF Bisque-Fired—Firing Notes

This product has been bisque-fired to 2475 °F, but additional firing to 3075–3125 °F can be performed to achieve high density, hardness and mechanical strength. Allow for 15–18% shrinkage using the following firing schedule. Raise temperature 500 °F per hour to 2000 °F and 200 °F per hour to 3125 °F. Soak for 12 hours then cool to room temperature before removing parts.

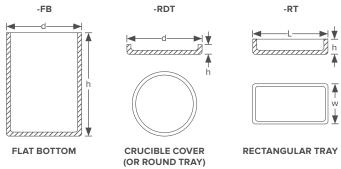
DENSE CERAMICS

Technical Bulletin A1-S2

502-1400-96

502-1400-96 + Glazing

502-1400-998


502-676

DENSE CERAMICS — ALUMINUM OXIDE, ALUMINUM NITRIDE, MAGNESIUM OXIDE, ZIRCONIUM OXIDE

Material Properties ¹	502-1400-96	502-1400-998	502-1835	502-676	502-1900-MSZ	502-1900-YTZP
Composition-Purity	Aluminum Oxide 96%²	Aluminum Oxide 99.8%	Aluminum Nitride 98%	Magnesium Oxide ² 99.4%	Zirconia Magnesia Stabilized (3.5%)	Zirconia Yttria Stabilized (12.0%)
Thermal Properties						
Max Use Temperature, °F (°C)	3100 (1700)	3050 (1675)	1830 (1000) ³	3270 (1800)	2200 (1200)	930 (500)
Coefficient Thermal Expansion, in/in/°F x 10-6 (°C)	3.5 (6.3)	3.6 (6.5)	2.6 (4.6)	7.7 (13.9)	4.9 (8.9)	3.8 (6.9)
Thermal Conductivity, W/m-K	23	30	170	2.2	3	2.2
Mechanical Properties						
Compressive Strength, psi (MPa)	300,000 (2,070)	325,000 (2,240)	51,000 (350)	120,000 (830)	270,000 (1860)	360,000 (2,485)
Flexural Strength, psi (MPa)	52,000 (360)	55,000 (380)	59,000 (410)	35,500 (240)	90,000 (620)	138,000 (950)
Fracture Toughness, MPa.m ^{0.5}	4–5	3–4	2.5	_	12	10
Hardness, Rockwell R-45N	81	86	70	70	78	80
Electrical Properties						
Volume Resistivity, ohm-cm	> 1 × 10 ¹⁴	> 1 × 10 ¹⁴	> 1 × 10 ¹²	1 × 10 ¹²	> 1 × 10 ¹³	> 1 × 10 ¹³
Dielectric Strength, volts/mil	250	290	787	150	300	240
Dielectric Loss, 1 MHz	0.0004	< 0.0001	_	_	0.0016	_
Dielectric Constant, 1 MHz	9.1	9.8	8.8	9.6	22.7	30.0
Physical Properties						
Density, g/cc	3.71	3.91	3.32	3.45	5.72	6.02
Gas Permeability	Gas Tight	Gas Tight	_		Gas Tight	Gas Tight
Water Absorption, %	0.0	0.0	_	4.5	0.0	0.0
Color	White	lvory	Light Gray	Light-Brown	Light-Yellow	lvory

Reference Notes

 $^{^3}$ This temperature limit applies to an oxidizing atmosphere only. Product can be used in vacuum/inert atmospheres to 2900 $^\circ$ F (1600 $^\circ$ C).

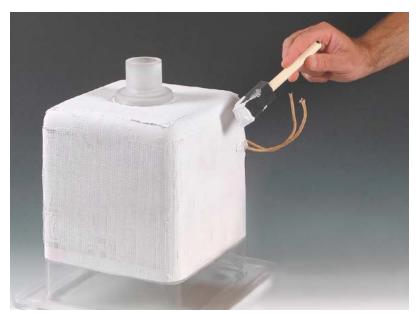
Property measurements were taken at 25 °C. Additional data at elevated temperatures may be available upon request.

² Slip-cast crucibles and flanged lids are available in stock shapes up to 6" diameter and 10" high.

DENSE CERAMICS — BN COMPOSITES

Technical Bulletin A1-S3

502-1810 502-1820 502-1830 502-1830


DENSE CERAMICS — BN COMPOSITES

Material Properties ¹	502-1810	502-1820	502-1830
Composition	BN + Al ₂ O ₃	BN + AIN	BN + ZrO ₂
Binder	B_2O_3	B_2O_3	B ₂ O ₃
Thermal Properties			
Max Use Temperature			
Oxidizing, °F, (°C)	1830 (1000)	1830 (1000)	1830 (1000)
Vacuum, °F, (°C)	3180 (1750)	3270 (1800)	3180 (1750)
Inert, °F, (°C)	3180 (1750)	3270 (1800)	3180 (1750)
Coefficient Thermal Expansion, in/in/°F \times 10 ⁻⁶ (°C)	1.1 (2.0)	1.6 (2.8)	2.0 (3.5)
Thermal Conductivity, W/m-K	30	85	30
Mechanical Properties			
Compressive Strength, psi (MPa)	21,025 (145)	27,725 (205)	31,900 (220)
Flexural Strength, psi (MPa)	9,425 (65)	12,325 (85)	13,050 (90)
Electrical Properties			
Volume Resistivity, ohm-cm	> 1 × 10 ¹³	> 1 × 10 ¹³	1 × 10 ¹²
Dielectric Constant, 1 MHz	3.8	7.2	8.5
Physical Properties			
Density, g/cc	2.25–2.35	2.75–2.85	2.90-3.00
Water Absorption, %	1.8	1.3	1.2
Color	Light Grey	Grey	Grey

HIGH TEMPERATURE CERAMIC ADHESIVES

Technical Bulletin A2-S1

Ceramabond[™] 569 bonds flex heater to quartz vessel.

Ceramabond[™] 835-M bonds halogen lamp.

Ceramabond[™] 503 coats heater used to 1700 °C.

Ceramabond[™] 503 coats spiral cantilevered sensor.

Ultra-Temp[™] 516 seals heater assembly.

Aremco's high temperature ceramic adhesives are formulated using a broad range of ceramics fillers and inorganic binders, and are ideal for bonding, potting and sealing ceramics, composites, graphite, refractory metals, quartz, and semiconductors for applications to 3200 °F (1760 °C).

Part No.	Filler	Bonding*	Principal Use				
503		C-C	Dense Ceramics; Alumina-to-Alumina				
520		C-C	High Purity Alumina Fiberboard & Refractories				
552		C-C, C-M	Solid Oxide Fuel Cells; Low CTE Metals				
569	Al_2O_3	C-C, C-M, Quartz	Probes, Sensors, Resistors, Igniters, Heaters				
670		C-C, C-M	Ceramic Textiles, Thread-Locking				
671		C-C, C-M, M-M	Ceramic Textiles, Thread-Locking				
835-M		C–C, C–M, Quartz	Halogen Lamps				
865	AIN	C-C, C-M	Probes & Sensors; Thermal Conductivity				
600-N	$AI_2O_3 - SiO_2$	C-C, C-M	Refractory Repair				
571	MgO	C-M, M-M	Heaters, Induction Coils, Sensors				
618-N	SiO ₂	C–C, Quartz	Porous Ceramics, Quartz Tubes & Vessels				
516	ZrO ₂ – ZrSiO ₄	C-C, C-M	Thermocouples, Semiconductor Wafers				
835	2102 - 213104	C-C, C-M	Halogen Lamps				
885	ZrO ₂	C-C	Zirconia, Solid Oxide Fuel Cells				
885-K	2102	C-M					
890	SiC	C–C	Crucibles, Heaters, Sagger Plates				
890-K	SIC	C-M	Probes, Sensors, Infrared Heaters				

TYPICAL APPLICATIONS

Electrical

- Halogen Lamps
- Heaters
- Igniters
- Fiberoptics
- Resistors
- Solid Oxide Fuel Cells

Instruments & Sensors

- Gas Chromatographs
- · High Vacuum Components
- Liquid Metal Inclusion Counters
- Mass Spectrometers
- Oxygen Analyzers
- Strain Gauges
- Semiconductors
- Temperature Probes

Mechanical

- Ceramic Honeycombs
- Ceramic Textiles
- Graphite Blocks
- Refractory Insulation
- Sagger Plates
- · Thread-Locking

CERAMABOND™ — HIGH TEMPERATURE CERAMIC ADHESIVES PROPERTIES

Pa	rt Number	503	520	552	569	670	671	835-M	600-N	865
Ma	ajor Constituent	·			Al_2O_3				$Al_2O_3 - SiO_2$	AIN
Со	olor	White	White	White	White	White	White	White	Tan	Gray
Te	mperature Limit, °F (°C)	3000 (1650)	3000 (1650)	3000 (1650)	3000 (1650)	3000 (1650)	3200 (1760)	3000 (1650)	3000 (1650)	3000 (1650)
No	o. Components	1	1	1	1	1	1	1	1	1
Vis	scosity, cP	50,000-90,000	1,000-3,000	53,000–73,000	Paste	2,500-5,000	40,000-80,000	30,000-40,000	5,000-15,000	Paste
Sp	ecific Gravity, g/cc	2.35–2.55	1.55-1.65	1.90–2.20	2.15-2.30	1.80–1.95	2.05–2.15	2.35–2.45	2.00-2.05	1.95–2.15
СТ	TE, in/in/°F × 10 ⁻⁶ (°C)	4.0 (7.2)	4.0 (7.2)	4.3 (7.7)	4.2 (7.6)	4.3 (7.7)	4.3 (7.7)	4.0 (7.2)	3.0 (5.4)	1.5 (2.7)
	Mix Ratio, powder:liquid	NA	NA	NA	NA	NA	NA	NA	NA	NA
_	Thinner	503-T	520-T	552-T	569-T	670-T	671-T	835-M-T	600-T	865-T
Handling	Solvent	Water	Water	Water	Water	Water	Water	Water	Water	Water
Hano	Application Temperature, °F	50–90	50-90	50–90	50-90	50-90	50-90	50–90	50-90	50–90
	Storage Temperature, °F	40–90	40-90	40–90	40-90	40–90	40–90	40–90	40-90	40–90
	Shelf Life, months	6	6	6	6	6	6	6	6	6
_	Air Set, hrs	≤1	1–2	1–4	1-4	1–4	1–4	1–4	1–4	1–4
Curing	Heat Cure, °F, hrs	200, 2 + 500, 2 + 700, 2	200, 2 + 800, 1	200, 2 + 500, 2	200, 2	200, 2	200, 2	200, 2	200, 2 +350, 1	200, 2 + 350, 2 + 500, 2
Die	electric Strength, volts/mil @ RT	171	171	173	138	142	182	163	203	187
То	rque Strength, ft-lbs ¹	60	10	52	38	60	57	63	14	27
Mo	oisture Resistance ²	Good	Good	Excellent	Excellent	Excellent	Excellent	Good	Excellent	Excellent
All	kali Resistance ²	Fair	Good	Good	Good	Good	Excellent	Excellent	Good	Good
Ac	id Resistance ²	Excellent	Good	Good	Excellent	Good	Good	Good	Good	Good

Footnotes

General Notes

- 1. Ceramabond adhesives do not contain volatile organic compounds (VOCs).
- 2. Special pigments available upon request.
- 3. Many adhesives including 503, 516, 552, 569, 571, 618-N, 671, 835-M, and 890 can be formulated using 1-5 micron ceramic powders. Add "-VFG" to the part number (eg. 503-VFG).

Abbreviations

NA Not Applicable NM Not Measured

 $^{^1}$ Tested using a torque wrench after bonding a pre-oxidized ½"–13 nut and bolt and final curing at 1000 °F.

² Properties were evaluated after curing at 700 °F for 2 hours.

CERAMABOND™ — HIGH TEMPERATURE CERAMIC ADHESIVES PROPERTIES

Pai	rt Number	571	618-N	890	890-K	516	835	885	885-K	
Ma	jor Constituent	MgO	SiO ₂	SiC		ZrO ₂ –	ZrSiO ₄	ZrO ₂		
Co	lor	Off-White	Off-White	Blue-Gray	Blue-Gray	Tan	Tan	Tan	Tan	
Ter	mperature Limit, °F (°C)	3200 (1760)	3000 (1650)	3000 (1650)	3000 (1650)	3200 (1760)	3000 (1650)	3200 (1760)	3200 (1760)	
No	. Components	2	1	1	1	1	1	1	1	
Vis	scosity, cP	20,000-90,000 ³	40,000-60,000	35,000-55,000	10,000-40,000	40,000–70,000	20,000-40,000	10,000-20,000	10,000–30,000	
Spe	ecific Gravity, g/cc	1.90-2.20	1.80–1.90	1.70-1.75	2.35–2.45	2.15–2.30	2.25–2.35	2.65–2.70	2.65–2.70	
СТ	E, in/in/°F × 10 ⁻⁶ (°C)	7.0 (12.6)	.33 (.59)	2.4 (4.4)	3.0 (5.4)	4.1 (7.4)	4.0 (7.2)	4.0 (7.2)	4.2 (7.6)	
	Mix Ratio, powder:liquid	1.0:1.0, 1.5:1.0	NA	NA	NA	NA	NA	NA	NA	
_	Thinner	571-T	618-N-T	890-T	890-K-T	516-T	835-T	885-T	885-K-T	
Handling	Solvent	Water	Water	Water	Water	Water	Water	Water	Water	
Hanc	Application Temperature, °F	50-90	50-90	50-90	50-90	50–90	50-90	50-90	50–90	
_	Storage Temperature, °F	40-90	40–90	40-90	40-90	40–90	40–90	40–90	40–90	
	Shelf Life, months	6	6	6	6	6	6	6	6	
	Air Set, hrs	1–4	1–4	≤1	1–4	1–4	≤1	≤1	1–4	
Curing	Heat Cure, °F, hrs	200, 2	200, 2 + 500, 2 + 700, 2	200, 2 + 500, 2 + 700, 2	200, 2 + 500, 2	200, 2 + 500, 2 + 700, 2	200,2	200, 2 + 500, 2 + 700, 2	200, 2 + 500, 2	
Die	electric Strength, volts/mil @ RT	91	156	73	95	188	111	105	88	
Tor	rque Strength, ft-lbs ¹	22	77	40	50	50	50	40	20	
Мо	isture Resistance ²	Excellent	Excellent	Good	Good	Good	Good	Good	Good	
Alk	cali Resistance ²	Good	Good	Good	Good	Excellent	Good	Good	Good	
Aci	id Resistance ²	Fair	Good	Good	Good	Good	Good	Good	Good	

Footnotes

General Notes

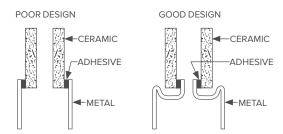
- 1. Ceramabond adhesives do not contain volatile organic compounds (VOCs).
- 2. Special pigments available upon request.
- Many adhesives including 503, 516, 552, 569, 571, 618-N, 671, 835-M, and 890 can be formulated using 1-5 micron ceramic powders. Add "-VFG" to the part number (eg. 503-VFG).

Abbreviations

NA Not Applicable NM Not Measured

 $^{^1}$ Tested using a torque wrench after bonding a pre-oxidized ½"–13 nut and bolt and final curing at 1000 °F.

² Properties were evaluated after curing at 700 °F for 2 hours.

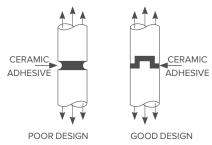

³ Ceramabond™ 571 ranges for viscosity and specific gravity reflect a powder-to-liquid mix ratio that ranges from 1-to-1 to 1.5-to-1.

DESIGN GUIDELINES

General design criteria for bonding with ceramic adhesives are similar to those for epoxy adhesives. Main considerations include the **coefficient of thermal expansion**, **joint design**, **glue line thickness**, and **operating environment**.

Coefficient of Thermal Expansion

CERAMIC-TO-METAL RECOMMENDED DESIGN



Due to the high thermal loading implicit in most ceramic adhesive applications, the joint design should account for the difference in the coefficient of thermal expansion between the adhesive and the components that are being joined. In the illustration above, note that the "poor" design loads the adhesive in tension since the metal expands faster than the ceramic. The "good" design allows for this thermal mismatch and loads the adhesion in compression, offering higher reliability.

Joint Design

Most adhesives offer relatively poor tensile-shear strength, so it is important to design a joint that will distribute the mechanical stress by maximizing the length of the glue line as shown in this illustration.

CERAMIC-TO-CERAMIC RECOMMENDED JOINT DESIGN

Glue Line Thickness

The clearance between mating parts at operating temperature should be 2–8 mils (50–200 microns). Less than 2 mils will prevent uniform adhesion; greater than 8 mils will often result in cohesive shear failure within the adhesive. A maximum depth of 0.25" is recommended when using a ceramic adhesive for a small potting application.

Operating Environment

These adhesives offer excellent chemical, electrical and ultra high thermal resistance, and do not outgas under high vacuum. The main limitations are (a) relatively low mechanical strength and (b) slight porosity after curing. Contact Aremco for suggestions about how to reduce porosity and produce gas-tight seals.

APPLICATION PROCEDURES

Surface Preparation

Smooth surfaces are difficult to bond and should be etched, abrasive blasted or oxidized, then cleaned thoroughly prior to application. Aremco's Corr-Prep™ CPR2000 is recommended for etching metals. Porous substrates should be pre-coated with a binder (thinner) to prevent separation and absorption of the adhesive binder. Add a "-T" to the part number (eg. 503-T) to designate the product thinner.

Mixing

One-part adhesives tend to settle and should be mixed thoroughly prior to use. Refer to Tech Bulletin A12 for information about Aremco's **Model 7000 Pneumatic Mixer.** Mix ratios for two-part adhesives are shown in the Property Chart. Viscosity may be adjusted by thinning up to 20% by weight.

Application

Apply a thin coat of adhesive to each surface using a brush, spatula or dispenser. Using a clamp or similar tool, maintain a uniform glue line of 2–8 mils (50–200 microns) by applying even pressure across the assembly. Wipe away excess material prior to drying. Refer to Tech Bulletin A12 for optional dispensing tools.

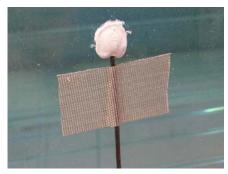
Model 7000 Mixer


Curing

Refer to the Property Chart for specific curing instructions for each product. A ramp rate of ~5 °F per minutes is recommended. If any blistering occurs, repeat curing process by slowing down the ramp rate. Blistering may be caused by an excessively quick release of water vapor from the adhesive.

Note that Ceramabond adhesives cure by dehydration. Although the primary outgassing by-product is water vapor, small amounts of inorganic binder and ceramic filler may also attach to the water vapor during the curing cycle. Although most of the dehydration occurs at 200–350 °F, chemically absorbed water may remain until the adhesive is exposed to temperatures in excess of 700–800 °F.

Cleanup


Uncured material can be cleaned with warm water and soap. Cured material can often be removed using warm water and ultrasonics. Cured material that has been cycled to ultra-high temperatures is more difficult to remove; it can be softened sometimes with warm water and ultrasonics, but a strong acid such as HCI may be required for removal. Mechanical abrasion may also be necessary.

Ceramabond™ 571 coats copper induction heater.

Ceramabond[™] 571 coats oxygen sensor.

Ceramabond™ 571 bonds thermocouple to glass.

Ceramabond™ 618-N bonds porous ceramic filter elements.

Ceramabond[™] 671 used as a high temp threadlocker.

Ceramabond[™] 503 repairs furnace saggar plate.

Ceramabond™ 835-M bonds heat sink to halogen lamp.

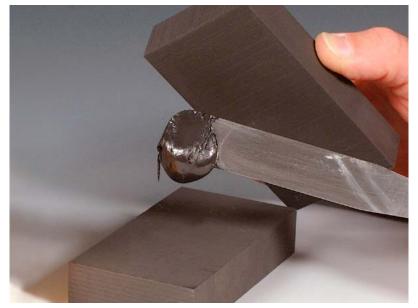
Ultra-Temp™ 516 bonds thermocouple to quartz tube.

Ceramabond™ 835 bonds halogen lamp.

Ceramabond[™] 552 seals thermocouple in metal housing.

Ceramabond[™] 835-M bonds cover to halogen Ceramabond[™] 835-M bonds halogen lamp. lamp.

CERAMIC ADHESIVE SELECTOR CHART


Material	CTE °F (°C)	503	520	552	569	670	671	835-M	600-N	865	571	618-N	890	890-K	516	835	885	885-K
					Al_2O_3				Al ₂ O ₃ - SiO ₂	AIN	MgO	SiO ₂	S	iC	ZrO ₂ –	ZrSiO ₄	Zı	O ₂
Alumina	4.4 (7.9)	•	•	•	•	•	•	•			×							
Alumina-Silica	1.8 (3.2)								×									
Aluminum Nitride	1.5 (2.7)									•		×						
Beryllia	4.1 (7.4)	•		х	х	х	x	X							×	х	×	
Boron Carbide	2.6 (4.7)	X											X					
Boron Nitride	4.2 (7.6)	×																
Borosilicate Glass	1.8 (3.2)	X																
Calcium Silicate	3.0 (5.4)					•												
Ceramic Textile	_						x											
Cordierite	1.1 (2.0)																	
Graphite	4.3 (7.7)	X											х					
Macor	5.2 (9.4)			х	•	х	×	×			×							
Mica	4.7 (8.5)																	
Mullite	3.0 (5.4)	X		х	х	х									×	х		
Quartz	0.30 (0.54)	X			Х			х				•				Х		
Refractory, Dense	_	•	•										•				×	
Refractory, Porous	_		•						•									
Sapphire	4.2 (7.6)	•			х	х		х										
Silica	0.31 (0.56)											•						
Silicon Carbide	2.9 (5.2)	X											•					
Silicon Nitride	1.8 (3.2)	×								×		X	X					
Steatite	4.0 (7.2)			х			х	х										
Zirconia	5.7 (10.3)														x	Х	•	•
Zirconia Silicate	4.0 (7.2)														•		×	
Aluminum	15.0 (27.0)										•							
Brass	10.2 (18.4)										•							
Cast Iron	5.9 (10.6)			х	х	х	×	×			•							
Copper	9.3 (16.7)										•							
Inconel	6.4 (11.5)			х	х	х	х	Х			•							
Molybdenum	2.9 (5.2)			х	•	х	x	х							×	х		
Nickel	7.2 (13.0)										•							
Nickel-Iron	2.6 (4.7)			х		х	×	x							×	х		
Platinum	4.9 (8.8)	•		х	x	х												
Silicon	1.6 (2.9)									×					×	х		
Silver	10.6 (19.1)										×							
Stainless (300 Series)	9.6 (17.3)										×			х				х
Stainless (400 Series)	6.2 (11.2)			х	х	х	х	X			•			х	×	х		×
Steel (1010)	6.5 (11.7)			х	х	х	х	х						х	×	х		х
Tantalum	3.9 (7.0)			х	х	х	х	х			х			х	х	х		
Titanium	5.8 (10.4)			х	х	х	х	х						х	×	х		х
Tungsten	2.5 (4.5)			х	•	х	х	Х							x	х		

^{• =} Preferred, x = Applicable

HIGH TEMPERATURE GRAPHITE ADHESIVES

Technical Bulletin A2-S2

Graphi-Bond™ 551-RN seals sensor in carbon brushes.

Graphi-Bond $^{\text{\tiny{M}}}$ 551-RN bonds graphite blocks.

Aremco's high temperature graphite adhesives are formulated using both phenolic and silicate binders to bond carbon, carbon fiber composite (CFC), and graphite components, structures and tools used in a broad range of applications to 5400 °F (2985 °C).

Part No.	551-RN	551-RN-MV	669		
Filler	Graphite	Carbon	Graphite		
Binder	Phenolic	Phenolic	Silicate		
Consistency	High Viscosity	Medium Viscosity	Low Viscosity		
Use Atmosphere	Reducing/Vacuum	Reducing/Vacuum	Oxidizing		
Bond Strength	High	Ultra-High	Moderate		
Max Temperature	5400 °F (2985 °C)	5400 °F (2985 °C)	1400 °F (760 °C)		

TYPICAL APPLICATIONS

Bonding

- · Graphite Insulation
- · Carbon Brick
- · Carbon Foam & Felt
- · Carbon Fiber Composites
- Graphite Rams & Punches
- Graphite Sight Tubes
- Graphite Pour Spouts
- Graphite Foil to Rigid Graphite Insulation
- · Graphite Foil to CFC

Laminating

• Carbon Fiber Composites

Reparing

- Graphite Trays, Dies, Jigs, Fixtures
- Patch Holes
- Fix Scratches
- · Repair Susceptors

Sealing

Porosity in Carbon & Graphite

HIGH TEMPERATURE GRAPHITE ADHESIVES PROPERTIES

Pa	rt Number	551-RN ^{1, 2}	551-RN-MV ^{1, 2}	669		
Tra	dename					
Ma	jor Constituent	Graphite	Carbon	Graphite		
Со	lor	Black	Black	Black		
Tei	mperature Limit, °F (°C)	5400 (2985)	5400 (2985)	1400 (760)		
No	. Components	1	1	1		
Vis	cosity, cP	Paste	60,000-90,000	20,000-40,000		
Sp	ecific Gravity, g/cc	1.45–1.50	1.15–1.25	1.45–1.50		
СТ	E, in/in/°F × 10 ⁻⁶ (°C)	4.1 (7.4)	4.1 (7.4)	4.2 (7.6)		
	Mix Ratio, powder:liquid	NA	NA	NA		
ng	Thinner	Ethanol ³	Ethanol ³	669-T / H₂O		
Handling	Application Temperature, °F	40-90	40–90	50–90		
Ĕ	Storage Temperature, °F	30–75	30–75	40–90		
	Shelf Life, months	6	6	6		
ور	Air Set, hrs	1–4	1–4	1–4		
Curing	Heat Cure, °F, hrs	265, 4 + 500, 2	265, 4 + 500, 2	200, 2		
Во	nd Type	99% Carbonaceous	99% Carbonaceous	Silicate-Graphite		
Die	electric Strength, volts/mil @ RT	75	130	105		
La	o-Shear Strength, psi @ RT Post-Cure	810	1425	224		
Мо	isture Resistance	Excellent	Excellent	Excellent		
Alk	rali Resistance	Good	Good	Good		
Aci	d Resistance	Good	Good	Good		

APPLICATION PROCEDURES

Surface Preparation

Remove any loose or embedded carbon or graphite dust thoroughly prior to adhesive application and make sure the substrate is completely dry and free of moisture.

Mixing

Make sure adhesive is brought to room temperature prior to application and remix as needed using a spatula or automatic equipment. Refer to Tech Bulletin A12 for information about Aremco's **Model 7000 Pneumatic Mixer.** Viscosity may be adjusted by using the thinner indicated in the property chart up to 20% by weight.

Application

Apply a thin coat of adhesive to each substrate using a proper tool. Use a clamp to maintain a uniform glue line thickness of 5–10 mils across the joint. Wipe away excess material prior to drying and curing.

Curing

Refer to the Property Chart for specific curing instructions for each product. Note that excessive film thickness or rapid heating may result in blisters.

Footnotes

- ¹ Graphi-Bond 551-RN and 551-RN-MV are also offered in a two-part, resin and powder, kit. Add "-X" to part number.
- 2 Graphi-Bond 551-RN and 551-RN-MV volatile loss is complete at ~1300 °F (700 °C). Major loss occurs at 200–400 °C, methane at < 400 °C, hydrogen to 700 °C.
- ³ Graphi-Bond™ 551-RN and 551-RN-MV can also be thinned with methanol and isopropyl alcohol.

Abbreviations

NA Not Applicable

HIGH TEMPERATURE CERAMIC-METALLIC PASTES

Technical Bulletin A3

Pyro-Putty® High Temperature Pastes are used to seal joints and repair defects in cast aluminum, cast iron, steel and stainless steel. Formulated using the most advanced organic and inorganic-ceramic technologies, these materials resist temperatures to over 2000 °F. Applications for Pyro-Putty® are widespread and found typically in the aerospace, automotive, foundry, heattreating, incineration, and power generation industries.

Pyro-Putty® 950 seals turbo.

Ceramic-Metallic Filled Inorganic Pastes

Pyro-Putty® 653

- Ceramic & Stainless Filled, One-Part, Water-Based Paste
- For Vertical Surfaces to ½" Thick
- Repairs Cast Iron, Steel & Stainless Parts to 2000 °F

Pyro-Putty® 1000

- Ceramic & Aluminum Filled, Two-Part, Water-Based System
- For Vertical Surfaces to ½" Thick
- Repairs Defects in Aluminum to 1400 °F

Pyro-Putty® 2400

- · Ceramic & Stainless Filled, One-Part, Water-Based Paste
- For Applications to ¾" Thick
- Repairs Cast Iron, Steel & Stainless Parts to 2000 °F

Exhaust Stacks Heat Exchangers

TYPICAL APPLICATIONS

- Incinerators
- Manifolds
- Molds and Dies
- Headers

Afterburners

Boilers

Castings

Ceramic-Filled Resinous Pastes

Pvro-Puttv® 950

- Ceramic Fiber Filled, Organic-Resinous Gasket Seal
- For sealing High Temperature Joints to 950 °F, 750 psi
- · Cures to a Tough, Pliable, Chemically Resistant Material

Pyro-Putty® 1500

- · Ceramic Fiber Filled, Organic-Resinous Gasket Seal
- Seals Boiler Doors & Molten Metal Systems
- Easy to Apply & Remove, For Uses to 2300 °F

TYPICAL APPLICATIONS

- Turbines
- Boilers
- Ducting
- Heat Exchangers
- Furnaces

Piping

- Compressors
- Ovens
- Pumps
- Steam Valves
- Blowers
- · Foundry Molds

PYRO-PUTTY® PROPERTIES

Тур	ре	Cerami	c-Metallic Filled Inorganic	: Pastes	Ceramic-Filled I	Resinous Pastes	
Pa	rt Number	653	1000	2400	950	1500	
Fill	er	Stainless	Aluminum	Stainless	Ceramic Fiber	Ceramic Fiber	
Со	lor	Metallic Gray	Light Gray	Metallic Gray	Silver Gray	Gray Brown	
Ter	nperature Limit, °F (°C)	2000 (1093)	1400 (760)	2000 (1093)	950 (510)	2300 (1260)	
Specific Gravity, g/cc		1.90	1.80	1.50	1.09	1.27	
Vis	cosity, cP	Paste	Paste	Paste	Paste	Paste	
No	. Components	1	2	1	1	1	
Mi	Ratio, Powder:Liquid	NA	2:1	NA	NA	NA	
Curing	Air Set, hrs	2–4	2–4	5–7	NA	1–2	
J.	Heat Cure, °F/hrs	200 / 3-4	160 / 1–2	200 / 2-4	400 / 1 or 225 / 6	200 / 1	
Sh	elf Life, months	6	6	6	6	6	
Sto	orage, °F	40-90	40-90	40-90	40-90	40-90	
Packaging		Pint, Quart, Gallon, 5-Gallon	Pint, Quart, Gallon, 5-Gallon	Pint, Quart, Gallon, 5-Gallon	11 oz. Tube	11 oz. Tube, Pint, Quart, Gallon, 5-Gallon	

APPLICATION PROCEDURES

Surface Preparation

All surfaces must be free of oil, grease, dirt, corrosives or other contaminants before application. Porous metal castings should be baked at high temperature to burn off embedded oils. Smooth metal surfaces should be abrasive blasted with a coarse media to a minimum SP-10 near white blast (0.001" minimum profile) for best results.

Mixing

All products should be mixed thoroughly to a uniform consistency prior to use. Product viscosities may be reduced by adding a maximum of 5–10% by weight of the appropriate thinner. Thinner may be ordered by adding a "-T" to the product number (eg. 653-T). The mix ratio for Pyro-Putty® 1000 is 2.0 parts powder to 1.0–1.5 parts liquid by weight. This ratio will produce the consistency of a thick paste. Pyro-Putty® 1000 will outgas slightly after mixing and it is recommended that the mixture be limited to the amount required for a specific application. Store mixed material at room temperature in a plastic container that is approximately twice the mixture volume. Allow to outgas for 24 hours. Remix contents thoroughly prior to use. Note that mixture will not begin to harden in a closed container for over 24 hours. Hardening will initiate when mixture is removed from container and exposed to air.

Application

Pyro-Putty® products may be applied using a spatula, putty knife or caulk gun. For cross-sections greater than $\frac{1}{4}$ " multiple applications should be made to avoid blistering. Cross-sections for all products should not exceed $\frac{1}{2}$ " — $\frac{3}{4}$ " ($\frac{3}{4}$ " maximum for Pyro-Putty® 2400).

Curing

The following instructions are guidelines for curing. Alternative cure times may be appropriate depending on the size of the application.

Pyro-Putty® 653

- 1. Air dry for 2 hours at room temperature and up to 4 hours for thick cross-sections.
- 2. Heat cure at 200 °F for 3 hours.
- 3. For multiple applications, air set for 1–2 hours between coats, then heat cure at 200 °F for 3–4 hours after the last coat.

Pyro-Putty® 950

- 1. This product can be cured in service at the operating temperature of the equipment.
- 2. For curing before service, heat cure the joint without pressure at 400 °F for 30–60 minutes or 225 °F for 4–6 hours.

Pyro-Putty® 1000

- 1. A heat cure is not required for cross-sections less than $\frac{1}{8}$ " thick. Air dry at room temperature for a minimum of 2–4 hours prior to use.
- 2. A heat cure is recommended for cross-sections greater than $\frac{1}{8}$ " thick. Air dry at room temperature for a minimum of 2–4 hours, then heat cure at 160 °F for 1–2 hours.
- 3. After curing, this product can be sanded to achieve a dull aluminum appearance.

Pyro-Putty® 1000 bonds heater.

Pyro-Putty® 2400 seals high temp ducting.

Pyro-Putty® 2400 seals high temp threads.

Pyro-Putty® 1500

1. This product dries at room temperature and cures in service at the operating temperature of the equipment.

Pyro-Putty® 2400

- 1. Air dry at room temperature for a minimum of 5–7 hours, longer for thick cross-sections.
- 2. A heat cure is not required if the use temperature exceeds 400 °F. Otherwise, heat cure at 200 °F for 2–4 hours.

Storage

Unopened containers have a six month shelf life when stored at room temperature. Make sure opened containers are capped securely to prevent evaporation. Place a plastic film in between the cap and container to prevent air leakage. The container may be inverted periodically to minimize settling. Store container between 40 °F and 90 °F.

Safety

Read Material Safety Data Sheet carefully before using any of the above products. Prolonged skin contact should be avoided due to possible irritation. In the uncured state, materials can be washed from the skin with a mild soap and water. If any material contacts eyes, flush continuously with water or neutralizing solutions, then consult a physician immediately.

HIGH TEMPERATURE POTTING AND CASTING MATERIALS

Technical Bulletin A4

Aremco Ceramacast™ products provide the most expansive range of ceramic- and silicone-based materials for the assembly of high temperature, high power electrical devices, fixtures, molds and tooling.

PRODUCT HIGHLIGHTS

Aluminum Oxide

Coarse Grain Castable for Tooling and Induction Heaters

Fine Grain, High Strength Potting CompoundFine Grain Castable for Potting & Tooling

576-N Medium Grain Castable for Large Potting & ToolingHigh Moisture Resistant Silicone for Small Potting

Aluminum Nitride

675-N Thermally Conductive Fine Grain Compound for Potting

Magnesium Oxide

Two-Part, Fast-Set, Compound for Casting & Potting

Silicon Dioxide

905 Moisture Resistant Silicone, Coarse Grain Compound905-FG Moisture Resistant Silicone, Fine Grain Compound

Silicon Carbide

673-N Thermally Conductive Adhesive & Potting Compound

Zirconium Oxide

646-N High Density, High Strength Castable & Potting Compound

Zirconium Silicate

505-N High Strength Compound for Molding & Potting

High Strength Dispensable Compound for Potting & Casting

Ceramacast™ 505-N is used in high temp filter assembly.

Ceramacast[™] 586 pots high power resistor.

Ceramacast™ 575-N bonds Xenon arc lamp.

Ceramacast™ 586 pots ignitor and cartridge heater.

Ceramacast[™] 586 is used in high temp filter assembly.

Ceramacast™ 673-N bonds SiC combustion nozzle.

CERAMACAST™ HIGH TEMPERATURE POTTING AND CASTING MATERIALS PROPERTIES

Product Number	510	515	575-N	578³	576-N	675-N	584	905³	905-FG ³	673-N	646-N	505-N	586
Major Constituent		Aluminum Oxide				Aluminum Nitride	Magnesium Oxide	Fused Silica		Silicon Carbide	Zirconium Oxide	Zirconiur	m Silicate
Binder	CaO-Al ₂ O ₃	K ₂ -SiO ₂	MgO-P ₂ O ₅	Silicone	MgO-P ₂ O ₅	MgO-P ₂ O ₅	SiO ₂	Silic	cone	MgO-P ₂ O ₅	MgO-P ₂ O ₅	K ₂ -SiO ₂	MgO-P ₂ O ₅
Temperature Limit, °F (°C)	3200 (1760)	3000 (1650)	3000 (1650)	900 (482)	3000 (1650)	2200 (1200)	2800 (1535)	900 (482)	900 (482)	2500 (1371)	3000 (1650)	2800 (1535)	2800 (1535)
CTE, in/in/°F × 10 ⁻⁶ (°C)	3.9 (7.0)	4.5 (8.1)	4.3 (7.7)	5.0 (9.0)	4.1 (7.4)	2.9 (5.2)	6.5 (11.7)	2.0 (3.8)	2.0 (3.8)	2.9 (5.2)	3.1 (5.6)	2.7 (4.9)	2.7 (4.9)
Volume Resistivity, ohm-cm @ RT	10 ⁹	10 ⁹	10°	10 ¹¹	10 ⁹	10 ¹³	10 ⁹	10 ¹¹	10 ¹¹	NA	10°	10°	10 ⁹
Dielectric Strength, volts/mil @ RT	75	250	150	> 250	150	300	100	> 250	> 250	NA	250	100	125
Compressive Strength, psi	8,000	11,000	11,800	NM	10,200	2,000	4,500	NM	NM	5,000	11,500	12,800	8,000
Porosity, %	< 7.0	< 2.0	< 2.0	< 0.5%	< 2.0	< 3.0	< 6.0	< 0.5	< 0.5	< 4.0	< 2.0	< 2.0	< 2.0
pH	3–4	11–12	2–3	NM	2–3	2–3	11–12	NM	NM	2–3	2–3	10-11	2–3
Moisture Resistance	Good	Good	Good	Excellent	Good	Good	Good	Excellent	Excellent	Good	Good	Excellent	Good
Alkali Resistance	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
Acid Resistance ¹	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
No. Components	1 + H ₂ O	1 + H ₂ O	1+ H ₂ O ²	2	1 + H ₂ O ²	1 + H ₂ O ²	2	2	2	1 + H ₂ O ²	1 + H ₂ O ²	1 + H ₂ O	1 + H ₂ O ²
Mix Ratio, powder:liquid	100 : 15–19	100 : 12–14	100 : 13–15	100 : 20–25	100 : 12–14	100 : 16–18	100 : 25–30	2:1	3:1	100 : 13–14	100 : 12–14	100 : 11–13	100 : 13–15
Mixed Viscosity, cP	12,000	10,000	11,000	Paste	9,000	15,000	18,000	Paste	Paste	12,000	9,000	10,000	15,000
Shrinkage, % at 1000 °F	< 1.0	< 1.0	< 0.3	< 1%	< 0.3	< 0.3	< 4.0	< 1.0	< 1.0	< 0.3	< 0.3	< 0.3	< 0.3
Pot Life, hrs	2–3	2–3	1–2	NA	1–2	1–2	< 10 mins	NA	NA	1–2	1–2	1–2	1–2
Shelf Life, months	12	12	12	12	12	12	1	905-L:6 905-P:12	12	12	12	12	12
Color	Light Gray	White	White	White	White	Light Gray	Off-White	Off-White	White	Gray	Tan	Off-White	Off-White
Approximate Density, lbs/gal	15	12	12.5	P-10.0/L-2.5	14.5	10.5	12	P-9.6/L-4.8	P-9.6/L-3.2	14.5	15.5	14	13

Reference Notes

¹ All products are attacked by hydrofluoric acid.

² These products can be mixed alternatively with HLB-1 Hydrophobic Liquid Binder to achieve higher moisture resistance.

³ Ceramacast™ 578, 905 and 905-FG moisture resistance, porosity and shrinkage were tested at 900 °F only.

Abbreviations

NA Not Applicable

NM Not Measured

APPLICATIONS PROCEDURES

Mixing

Blend powder thoroughly prior to adding water or liquid binder. Use the following mix ratios, adding the liquid into the powder and mixing thoroughly until uniform. Pour the mixture carefully into one side of the part. Vibrate as required to eliminate air bubbles.

		Weight	Ratios	
Product	Powder	Liquid	Min	Max
505-N	100	H₂O	11	13
510	100	H₂O	15	19
515	100	H ₂ O	12	14
575-N	100	H₂O, HLB-1	13	15
576-N	100	H₂O, HLB-1	12	14
578	100	578-L	20	25
584	100	584-L	25	30
586	100	H₂O, HLB-1	13	15
646-N	100	H₂O, HLB-1	12	14
673-N	100	H₂O, HLB-1	13	14
675-N	100	H₂O, HLB-1	16	18
905*	100	905-L	45	55
905-FG*	100	905-FG-L	30	35

Curing

Ceramacast™ 505-N, 515

- 1. Dry for 16–24 hours at room temperature.
- 2. Bake at 200 °F for 1-4 hours.
- 3. Bake at 250 °F for 1-4 hours.
- 4. Bake at 350 °F for 1 hour.
- 5. Final cure at 500 °F for 1 hour.

Ceramacast™ 510

- 1. Dry for 16–24 hours at room temperature..
- 2. Bake at 200 °F for 3-4 hours.
- 3. Final cure at 250 °F for 1 hour.

Ceramacast™ 584

- 1. Material will set in approximately 10 minutes.
- 2. Air dry for a minimum of 2 hours.
- 3. Bake at 200 °F for 2 hours.
- 4. Final cure at 250 °F for 3 hours.

Ceramacast[™] 575-N, 576-N, 586, 646-N, 673-N, 675-N

- 1. Dry for 8 hours minimum at room temperature.
- 2. Bake at 200 °F for 2–4 hours.
- 3. Final cure at 250 °F for 3 hours.
- 4. Final cure at 450 $^{\circ}$ F for 30–60 minutes if using HLB-1 Hydrophobic Liquid Binder.

Ceramacast™ 578

- 1. Dry for up 12–16 hours at room temperature to allow solvent to evaporate.
- 2. Bake at 150 °F for 4 hours.
- 3. Bake at 180 °F for 2 hours.

- 4. Bake at 200 °F for 2 hours.
- 5. Bake at 250 °F for 1 hour.
- 6. Bake at 350 °F for 1 hour.
- 7. Final cure at 450-500 °F for 1 hour.

Ceramacast™ 905, 905-FG

- 1. Dry for 16–24 hours at room temperature to allow solvent to evaporate.
- 2. Bake at 150 °F for 1 hour.
- 3. Bake at 250 °F for 1 hour.
- 4. Bake at 350 °F for 1 hour.
- 5. Final cure at 450 °F for 1 hour.

Special Instructions

Ceramacast $^{\rm m}$ 578, 905 and 905-FG are offered in two-part kits consisting of a powder and liquid binder.

Kits	Ceramic Powder	Silicone Resin Liquid
578	578-P	578-L
905	905-P	905-L
905-FG	905-FG-P	905-FG-L

The liquid portion of these kits can also be supplied as a silicone resin powder to which methyl ethyl ketone (MEK) is added at the time of use. The silicone resin powder is recommended for cases in which the freight charge for shipping a flammable liquid is cost prohibitive. Part numbers are:

Kits	Ceramic Powder	Silicone Resin Powder	Silicone Resin Liquid Mix Ratio by Weight		
578X	578-P	578-LX	40 Parts MEK + 60 Parts 578-LX		
905X	905-P	905-LX	50 Parts MEK + 50 Parts 905-LX		
905-FGX	905-FG-P	905-FG-LX	50 Parts MEK + 50 Parts 905-FG-LX		

These products will mix to a viscous, non-pourable paste. The silicone liquid will wet-out the ceramic powder after which the excess liquid should be squeezed out using a filter bag. Ceramacast™ 578 and 905-FG can be injected using a syringe; 905 is too coarse to inject and should be ladled into the part. Vibration can be used to help the compound flow better.

Notes

- Water-mixed products will retain chemically absorbed water even after curing at 250–350 °F. Additional curing at 500–1000 °F will help to remove residual moisture to obtain optimal electrical and mechanical properties.
- 2. If cracking occurs, possible causes include (a) excessive water or liquid binder was used, (b) curing occurred too rapidly, or (c) the cross-sectional thickness is too high.
- 3. Ceramacast™ products tend to react with aluminum molds.

 Use Aremco's EZ-Cast™ 580-N Flexible Silicone Rubber

 Molding Compound to avoid problems when casting
 ceramic parts.
- 4. Refer to Safety Data Sheet (SDS) prior to use.

SILICONE MOLDING COMPOUNDS

Aremco's EZ-Cast™ 580N is an ideal compound for producing high reliability master molds. This silicone rubber compound exhibits high tear strength, very low shrinkage and high flexibility, all requirements for detailed reproduction.

	PRO	PERTIES		
Up	per Temp. Limit, °F (°C)	400 (204)		
Lov	ver Temp. Limit, °F (°C)	-76 (-60)		
Fle	xibility	High		
Ha	rdness, Durometer, Shore A	45		
Ter	nsible Strength, psi	600 Min		
Tear Strength, Die B lb/in		110 Min		
Elo	ngation, %	400 Min		
Lin	ear Shrinkage, %	< 0.1		
	No. of Components	2		
ng	Mixed Viscosity, cP	30,000		
Handling	Specific Gravity, g/cc	1.3		
Ŧ	Mix Ratio, resin:catalyst	10:1		
	Pot Life, mins	30		
She	elf Life, @RT, months	6		
Col	lor	Beige Resin; Deep Red Catalyst		
We	ight/Gal	10 lbs resin, 1 lb catalyst		

Instructions For Use

- 1. Machine a master pattern from aluminum and secure master into an aluminum box with removable sides. If a wooden mold is used, make sure that the mold is sealed with wax and that tapers are included to facilitate removal. Mold should allow for a cast part wall thickness of 3/8" 1/2" minimum.
- Premix base and activator thoroughly before blending the components together in a ratio of 10 parts base to 1 part activator.
- 3. Vacuum degas at 29 in Hg. The mixture will rise to about 3–4 times its original volume, then collapse. Hold vacuum for another 1–2 minutes then release.
- 4. Pour slowly into a master, to fill all details and prevent air entrapment. Cure for 16–24 hours at room temperature, or 3–4 hours at 120 °F, or 1–2 hours at 150 °F. In humid atmosphere, heat cure for best results.

EZ-CAST™ FLEXIBLE MOLDS IN TWO EASY STEPS

Place the machined master, a duplicate of the finished casting, into a pan, and pour the EZ-Cast™ over the master.

Cure the EZ-Cast $^{\text{\tiny M}}$ mold and peel out your finished pliable mold.

HIGH TEMPERATURE SPECIALIZED COATINGS & SEALANTS


Technical Bulletin A5-S1

Corr-Paint™ CP4050-S1 insulates induction heating coil.

Ceramacoat™ 512-N insulates circuit breaker

Aremco-Seal™ 529 transparent high temp sealer.

PRODUCT HIGHLIGHTS

Ceramic

512-N

Viscous, off-white, electrical insulation paste for circuit breakers, power resistors and solenoids to 2400 °F (1316 °C).

540

Medium viscosity, chromium oxide green, phosphate-bonded, high strength, electrical insulation coating for applications to 3000 °F (1650 °C).

Silicone Resin

529

Transparent silicone sealers with exceptional electrical and moisture resistance to 800 °F (427 °C). Available in low (529), medium (529-HV) and high viscosity (529-VHV) systems.

CP4040-S1

Low viscosity, white coating for sealing high temperature electrical wire insulation up to 1100 °F (593 °C).

CP4050-S1

Low viscosity, green coating for electrically isolating copper induction coils up to 1100 °F (593 °C).

Silicone-Emulsion

CP4000-FB Low-viscosity black coating for sealing ceramic fiber boards to prevent dusting up to 1100 °F (593 °C). Additional colors available upon request.

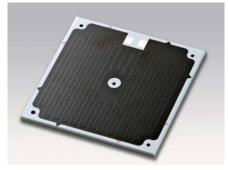
CP4055

Chrome oxide green, electrical insulation coating for use on power resistors for applications to 1100 °F (593 °C).

Silicone-Glass-Ceramic

SGC4000

Silicone-glass-ceramic, gray, low viscosity, corrosion, flame, and scratch resistant coating 900 °F (482 °C).


SGC4000-HT Silicone-glass-ceramic, gray, low viscosity, corrosion, flame, and scratch resistant coating 1400 °F (760 °C).

Cerama-Dip[™] 540 coats high power resistor.

Cerama-Dip[™] 540 coats high power resistor.

Glass-Coat™ SGC4000 applied to thick-film heater.

22

HIGH TEMPERATURE SPECIALIZED COATINGS & SEALANTS

Туре	CER.	AMIC			SILICONE RESIN		
Product Number	512-N	540	529	529-HV	529-VHV	CP4040-S1	CP4050-S1
Tradename	Ceramacoat™	Cerama-Dip™	Aremco-Seal™	Aremco-Seal™	Aremco-Seal™	Corr-Paint™	Corr-Paint™
Color (cured)	Off-White	Green	Clear	Clear	Clear	White	Green
Maximum Temperature, °F (°C)	2400 (1316)	3000 (1650)	800 (427)	800 (427)	800 (427)	1100 (593)	1100 (593)
No. Components	1	1	1	1	1	1	1
Viscosity, cP1	60,000-80,000	15,000–25,000	50–250	1,200–1,600	12,000–14,000	250–500	300–500
Specific Gravity, g/cc	1.98	2.22	1.05	1.09	1.22	1.34	1.36
Dielectric Breakdown Strength, VDC/mil	160	70	> 335	> 430	> 375	833	1250
Solids by Weight, %	75.9	75.0	68.0	74.9	80.0	57.1	57.1
Solids by Volume, %	55.0	48.9	60.9	69.0	75.3	44.4	44.4
WFT, mils (microns) ²	1.82 (46.2)	2.05 (52.0)	1.64 (41.7)	1.45 (36.8)	1.33 (33.7)	2.3 (57.2)	2.3 (57.2)
DFT, mils (microns) ³	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft ² /gal (m ² /liter)	882 (21.6)	784 (19.2)	976 (24.0)	1106 (27.2)	1208 (29.6)	712 (17.5)	712 (17.5)
Curing, Min Air Set, hrs ⁵	2–4	1.0	0.5–1.0	0.5–1.0	0.5–1.0	1.0	1.0
Curing, Heat Cure, °F, hrs	200, 2–4 + 350, 1–2 + 500, 1	200, 1–2 + 350, 1–2 + 500, 1	200, 0.5–1 + 480, 0.75–1				
Application Temperature, °F	50-90	50–90	50-90	50–90	50–90	50-90	50–90
Thinner	512-N-T	540-T	MEK	MEK	MEK	PM Acetate	PM Acetate
Flash Point, °F/°C	NA	NA	77 (25)	82 (28)	86 (30)	~118 (48)	~118 (48)
Volatiles, lbs/gal	0.00	0.00	2.80	2.28	2.00	4.80	4.80
Shelf Life, months	6	6	6	6	6	6	6
Storage Temperature, °F	55-85	55–85	40-90	40–90	40–90	40–90	40–90

Reference Notes

- ¹ Viscosity is measured using a Brookfield LV Viscometer; spindle and speed selection vary depending on the product.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during mixing and application.
- Where a value is provided for "Min Air Set", it is recommended to set the coating at room temperature for, at minimum, the specified time prior to curing.

Abbreviations

NA Not Applicable
NR Not Required
DFT Dry Film Thickness
WFT Wet Film Thickness

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Quartz should be etched and/or sandblasted whenever possible. Smooth metal surfaces should be sandblasted or etched using Aremco's Corr-Prep™ CPR2000.

HIGH TEMPERATURE SPECIALIZED COATINGS & SEALANTS

Туре	SILICONE I	EMULSION	SILICONE-GLA	ASS-CERAMIC
Product Number	CP4000-FB	CP4055	SGC4000	SGC4000-HT
Tradename	Corr-Paint™	Corr-Paint™	Glass-Coat™	Glass-Coat™
Color (cured)	Black	Green	Light Gray	Black
Maximum Temperature, °F (°C)	1100 (593)	1100 (593)	900 (482)	1400 (760)
No. Components	1	1	1	1
Viscosity, cP ¹	150–300	500–1,000	40–80	900–1200
Specific Gravity, g/cc	1.30	1.35	1.59	1.61
Dielectric Breakdown Strength, VDC/mil	NA	700	1,000	1,000
Solids by Weight, %	55.0	55.0	74.0	79.0
Solids by Volume, %	40.2	38.1	55.5	53.6
WFT, mils (microns) ²	1.82 (46.2)	2.62 (66.6)	1.80 (45.8)	1.87 (47.4)
DFT , mils (microns) ³	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft²/gal (m²/liter)	882 (21.7)	612 (15.0)	890 (21.8)	860 (21.1)
Curing, Min Air Set, hrs ⁵	1.0	1.0	0.25	0.25
Curing, Heat Cure, °F, hrs	200, 0.5–1 + 480, 0.75–1	200, 0.5–1 + 480, 0.75–1	200, 0.25 + 480, 0.25 + 1000, 0.20	200, 0.25 + 480, 0.25 + 1200, 0.20
Application Temperature, °F	50–120	50–120	50–120	50–120
Thinner	Distilled Water	Distilled Water	Ethanol	PM Acetate
Flash Point, °F/°C	> 212 (100)	> 212 (100)	96 (36)	115 (46)
Volatiles, lbs/gal	0.65	0.67	3.50	3.90
Shelf Life, months	6	6	6	6
Storage Temperature, °F	55–85	55–85	40–90	40–90

Reference Notes

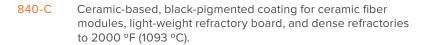
- ¹ Viscosity is measured using a Brookfield LV Viscometer; spindle and speed selection vary depending on the product.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during mixing and application.
- ⁵ Where a value is provided for "Min Air Set", it is recommended to set the coating at room temperature for, at minimum, the specified time prior to curing.

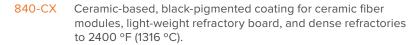
Abbreviations

NA Not Applicable
NR Not Required
DFT Dry Film Thickness
WFT Wet Film Thickness

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Quartz should be etched and/or sandblasted whenever possible. Smooth metal surfaces should be sandblasted or etched using Aremco's Corr-Prep™ CPR2000.




HIGH TEMPERATURE HIGH EMISSIVITY COATINGS

Technical Bulletin A5-S2

PRODUCT HIGHLIGHTS

Aremco's HiE-Coat™ 840-Series line of high emissivity coatings are black-body formulations designed to significantly improve the thermal efficiency of infrared heaters, furnaces, incinerators, and ovens used throughout the appliance, ceramics, chemical processing, metallurgical, and refining industries. Natural gas and oil savings in the range of 5–10% are typical using these coatings.

840-CM Ceramic-based, black-pigmented coating for dense refractories and refractory metals to 2000 °F (1093 °C).

840-CMX Ceramic-based, black-pigmented coating for dense refractories and refractory metals to 2400 °F (1316 °C).

840-M Ceramic-based, black pigmented coating for carbon and stainless steel to 2000 °F (1093 °C).

840-MX Ceramic-based, black pigmented coating for carbon and stainless steel to 2400 °F (1316 °C).

840-MS Silicone-Ceramic, black pigmented coating for aluminum, copper, carbon and stainless steel to 1100 °F (593 °C).

High emissivity coatings absorb and re-radiate significantly more radiant and convective heat than an uncoated burner tube or refractory to a cooler load. For refractories lined systems, this reduces the amount of heat stored in the lining which results in less thermal shock and related thermal stresses, resulting in longer refractory life and reduced maintenance costs. Since less energy is absorbed by the refractory lining, faster heat-ups result, reducing cycle time and energy costs.

HiE-Coat™ 840-M coats gas-fired heating tubes.

HiE-Coat™ 840-C coats ceramic fiberboard infrared heater

HiE-Coat™ 840-M coats industrial heat exchanger.

HiE-Coat™ 840-M coats gas burner component.

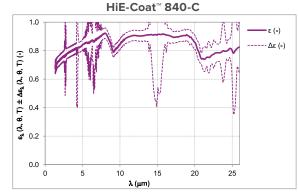
HiE-Coat™ 840-C coats exhaust pipe insulation.

HIE-COAT™ HIGH EMISSIVITY COATINGS

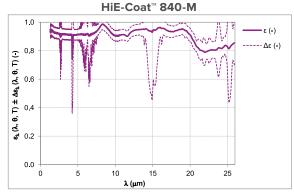
Product Number	840-C	840-CX ⁶	840-CM	840-CMX ⁶	840-M	840-MX ⁶	840-MS
Туре			Inorganio	-Ceramic			Silicone-Ceramic
Applications	Light-Weight Refractory	Light-Weight Refractory	Dense Refractory	Dense Refractory	Carbon Steel	Carbon Steel	Aluminum
	Fiber Modules	Fiber Modules	Refractory Metals	Refractory Metals	Stainless Steel	Stainless Steel	Copper
	Dense Refractory	Dense Refractory					Carbon & Stainless Steel
Color (cured)	Jet Black	Jet Black	Jet Black	Jet Black	Jet Black	Jet Black	Jet Black
Maximum Temperature, °F (°C)	2000 (1093)	2400 (1316)	2000 (1093)	2400 (1316)	2000 (1093)	2400 (1316)	1100 (593)
No. Components	1	1	1	1	1	1	1
Viscosity, cP1	70–160	50–150	600–800	150–300	400–800	300–700	250–500
Specific Gravity, g/cc	1.60	1.52	1.54	1.67	1.61	1.57	1.49
Solids by Weight, %	58.5	51.5	48.0	51.0	47.3	47.3	57.1
Solids by Volume, %	27.3	20.25	19.9	22.4	22.1	22.1	42.5
WFT, mils (microns) ²	3.66 (92.9)	4.94 (125.4)	5.03 (127.7)	4.46 (113.4)	4.52 (114.8)	4.52 (114.8)	2.40 (61.0)
DFT, mils (microns) ³	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.00 (25.4)
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft²/gal (m²/liter)	438 (10.8)	325 (8.0)	319 (7.8)	359 (8.8)	355 (8.7)	355 (8.7)	681 (16.7)
Curing, Min Air Set, hrs ⁵	1.0-2.0	1.0-2.0	1.0	1.0-2.0	1.0	1.0	1.0
Curing, Heat Cure, °F, hrs	200, 1	200, 1	200, 0.5 + 500 / 1	200, 0.5 + 500 / 1	200, 1 + 500 / 1	200, 1 + 500 / 1	480 / .75
Application Temperature, °F	50-90	50–90	50–90	50–90	50–90	50–90	50-120
Thinner	840-C-T	840-CX-T	840-CM-T	840-CM-T	840-M-T	840-MX-T	PM Acetate
Flash Point, °F/°C	NA	NA	NA	NA	NA	NA	~118 (48)
Volatiles, lbs/gal	0.0	0.0	0.0	0.0	0.0	0.0	5.3
Shelf Life, months	6	6	6	6	6	6	6
Storage Temperature, °F	55-85	55–85	55–85	55–85	55–85	55–85	40–90

Reference Notes

- ¹ Viscosity is measured using a Brookfield LV Viscometer; spindle and speed selection vary depending on the product.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during mixing and application.
- Where a value is provided for "Min Air Set", it is recommended to set the coating at room temperature for, at minimum, the specified time prior to curing.
- ⁶ Part numbers ending in "X" are made with black pigment that does not contain any copper; copper can produce "greening" of the coating when exposed to flame impingement.


Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Quartz should be etched or sandblasted whenever possible. Smooth metal surfaces should be sandblasted or etched using Aremco's Corr-Prep" CPR2000.


Abbreviations

NA Not Applicable DFT Dry Film Thickness NR Not Required WFT Wet Film Thickness

Spectral Normal Emissivity at 800 °C

λ (μm)	2	3.5	4.7	8.3	10	12.5	17.5	20	25
$\varepsilon_{\lambda} (\lambda, \theta, T) (-)$	0.735	0.799	0.827	0.903	0.848	0.904	0.896	0.860	0.809
$\Delta \varepsilon$ (-), k = 2	0.036	0.036	0.036	0.037	0.035	0.036	0.042	0.051	0.066

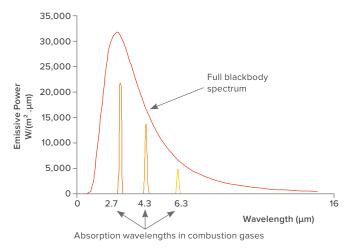
λ (μm)	2	3.5	4.7	8.3	10	12.5	17.5	20	25
$\varepsilon_{\lambda} (\lambda, \theta, T) (-)$	0.924	0.915	0.911	0.986	0.906	0.943	0.934	0.913	0.832
$\Delta \varepsilon$ (-), k = 2	0.038	0.037	0.037	0.039	0.037	0.037	0.041	0.047	0.062

For more Spectral Normal Emissivity Charts, visit $\underline{\mathsf{aremco.com/tech-notes}}$

HIGH TEMPERATURE HIGH EMISSIVITY COATINGS

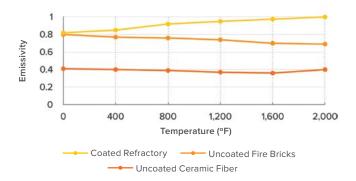
Technical Bulletin A5-S2A

HiE-Coat™ 840-Series coatings are ideal for improving the radiant heat transfer efficiency in gas-fired furnaces and kilns used in petrochemical refineries and the ceramic, chemical process and power generation industries. These coatings are typically applied to metal process tubes and refractory liners including ceramic fiber, dense brick, castables, and insulating firebrick.


HiE-Coat™ 840-C, 840-CM & 840-CX Refractory Coatings

Uncoated refractory reflects a majority of incident radiant energy back into the furnace flue gas at the same spectral wavelength at which it is emitted from the gas. Energy is then re-absorbed by the gas, limiting the amount of energy transferred to the work-load.

High emissivity coatings on furnace walls absorb more of the incident radiant energy and re-emit this energy across the full black-body wavelength spectrum. This spectral redistribution of emitted energy allows more radiant energy to pass through the flue gas and be transferred to the work-load.


Given that absorbed heat is immediately re-radiated to the cooler work-load, more heat is made available causing the flue gas temperature to decrease because less of the available heat is absorbed and stored in the refractory lining. As such, the refractory lining stays cooler and experiences less thermal shock and stress. Lower refractory temperatures reduce devitrification and shrinkage of ceramic fiber modules and dense refractories resulting in longer refractory life and reduced maintenance costs.

HiE-Coat™ 840-C applied to ceramic fiber module.

High Emissivity Coating Benefits for Refractory-Lined Furnaces

- Rapid Heat-Up
- · Shorter Cycle Times
- · Decreased Fuel Consumption
- Increased Heat Transfer
- · Improved Temperature Uniformity
- · Increased Refractory Life
- · Minimizes Refractory Dusting
- Reduced Build Up of Gas By-Products on Refractory

HiE-Coat™ 840-M, 840-MS & 840-MX Metal Tube Coatings

This series of high emissivity coatings is available for maximizing the thermal efficiency of radiant heater process tubes. These coatings help to limit scale formation thereby improving the thermal conductivity of the tubes and radiant heat output. Tube scale causes a significant drop in thermal conductivity requiring additional energy input to maintain the same production rate. HiE-Coat™ metal coatings applied in a dry film thickness of 2–3 mils helps to significantly reduce oxidation and corrosion of the metal tube.

High Emissivity Coating Benefits for Refractory-Lined Furnaces

- Improved Thermal Conductivity
- · Increased Production Rate
- · Decreased Fuel Consumption
- · More Uniform Tube Wall Temperature
- · Longer Tube Life
- · Lower Emissions

HiE-Coat™ 840-M coats industrial heat exchanger.

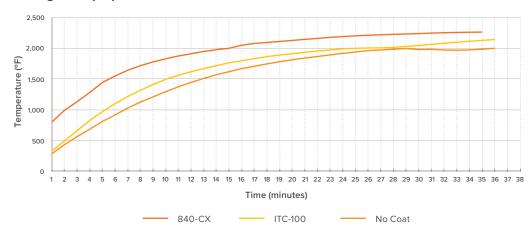

HiE-Coat™ 840-M coats gas-fired heating tubes.

Effect of soot buildup on thermal conductivity of process tubes

9.5%

Soot Loss

45.3%



Soot Loss 69%

Case Study

HiE-Coat™ 840-CX was applied to a specialty propane gas forge that was properly designed and well insulated to limit heat losses. The ramp up temperature was compared to both uncoated refractory and refractory coated using a competitor's product called ITC-100. It was found that the 840-CX helped to achieve a 200 °F higher forging temperature in one-half the time.

Forge Ramp Speed

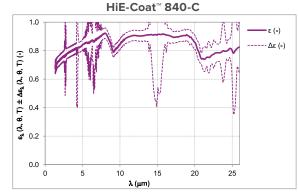
HiE-Coat™ 840-CX applied to a gas-fired forge.

HIE-COAT™ HIGH EMISSIVITY COATINGS

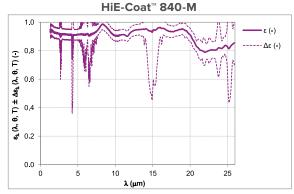
Product Number	840-C	840-CX ⁶	840-CM	840-M	840-MX ⁶	840-MS
Туре			Inorganic-Ceramic			Silicone-Ceramic
Applications	Light-Weight Refractory	Light-Weight Refractory	Dense Refractory	Carbon Steel	Carbon Steel	Aluminum
	Fiber Modules	Fiber Modules	Refractory Metals	Stainless Steel	Stainless Steel	Copper
	Dense Refractory	Dense Refractory				Carbon & Stainless Steel
Color (cured)	Jet Black	Jet Black	Jet Black	Jet Black	Jet Black	Jet Black
Maximum Temperature, °F (°C)	2000 (1093)	2400 (1316)	2000 (1093)	2000 (1093)	2400 (1316)	1100 (593)
No. Components	1	1	1	1	1	1
Mix Ratio, by Weight (by Volume)	NA	NA	NA	NA	NA	NA
Viscosity, cP1	70–160	50–150	600–800	400-800	300–700	250–500
Specific Gravity, g/cc	1.60	1.52	1.54	1.61	1.57	1.49
Solids by Weight, %	58.5	51.5	48.0	47.3	47.3	57.1
Solids by Volume, %	27.3	20.25	19.9	22.1	22.1	42.5
WFT, mils (microns) ²	3.66 (92.9)	4.94 (125.4)	5.03 (127.7)	4.52 (114.8)	4.52 (114.8)	2.40 (61.0)
DFT, mils (microns) ³	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.0 (25.4)	1.0 (25.4)	1.00 (25.4)
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft ² /gal (m ² /liter)	438 (10.8)	325 (8.0)	319 (7.8)	355 (8.7)	355 (8.7)	681 (16.7)
Curing, Min Air Set, hrs ⁵	1.0-2.0	1.0-2.0	1.0	1.0	1.0	1.0
Curing, Heat Cure, °F, hrs	200, 1	200, 1	200, 0.5 + 500 / 1	200, 1 + 500 / 1	200, 1 + 500 / 1	480 / .75
Application Temperature, °F	50-90	50-90	50–90	50–90	50-90	50–120
Thinner	840-C-T	840-CX-T	840-CM-T	840-M-T	840-MX-T	PM Acetate
Flash Point, °F/°C	NA	NA	NA	NA	NA	~118 (48)
Volatiles, lbs/gal	0.0	0.0	0.0	0.0	0.0	5.3
Shelf Life, months	6	6	6	6	6	6
Storage Temperature, °F	55–85	55–85	55–85	55–85	55–85	40–90

Reference Notes

- ¹ Viscosity is measured using a Brookfield LV Viscometer; spindle and speed selection vary depending on the product.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during mixing and application.
- Where a value is provided for "Min Air Set", it is recommended to set the coating at room temperature for, at minimum, the specified time prior to curing.
- ⁶ Part numbers ending in "X" are made with black pigment that does not contain any copper; copper can produce "greening" of the coating when exposed to flame impingement.


Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Quartz should be sandblasted whenever possible. Smooth metal surfaces should be sandblasted or etched using Aremco's Corr-Prep^{or} CPR2000.


Abbreviations

NA Not Applicable DFT Dry Film Thickness NR Not Required WFT Wet Film Thickness

Spectral Normal Emissivity at 800 °C

λ (μm)	2	3.5	4.7	8.3	10	12.5	17.5	20	25
$\varepsilon_{\lambda} (\lambda, \theta, T) (-)$	0.735	0.799	0.827	0.903	0.848	0.904	0.896	0.860	0.809
$\Delta \varepsilon$ (-), k = 2	0.036	0.036	0.036	0.037	0.035	0.036	0.042	0.051	0.066

λ (μm)	2	3.5	4.7	8.3	10	12.5	17.5	20	25
$\varepsilon_{\lambda} (\lambda, \theta, T) (-)$	0.924	0.915	0.911	0.986	0.906	0.943	0.934	0.913	0.832
$\Delta \varepsilon$ (-), k = 2	0.038	0.037	0.037	0.039	0.037	0.037	0.041	0.047	0.062

For more Spectral Normal Emissivity Charts, visit $\underline{aremco.com/tech-notes}$

HIGH TEMPERATURE THERMAL SPRAY SEALANTS

Technical Bulletin A5-S3

PRODUCT HIGHLIGHTS

Single part, ultra-low viscosity, water-dispersed,

inorganic, aluminum phosphate solution for penetrating

ultra-fine porosity applications 3000 °F (1650 °C).

503-VFG-C Single part, alumina-filled, water-dispersed, phosphate-

bonded, highly abrasion and corrosion resistant sealer for applications to 3000 °F (1650 °C). Available in many

standard colors.

503-VFG-C-WHT White 503-VFG-C-BLK Black 503-VFG-C-BLU Blue 503-VFG-C-RED Red 503-VFG-C-ORG Orange

634-ZOS Single part, zirconium oxide sealer produces a hard,

oxidation resistant coating for applications to 3000 °F

(1650 °C).

CP2000 Single part, urethane-based, gloss black, low viscosity,

room temperature curing, abrasion and corrosion resistant sealer for applications to 400 °F (204 °C).

CP2040 Single part, ultra-low viscosity, fast-curing, corrosion

resistant, clear phenolic sealer for impregnating micropores and cracks as fine as 0.0005" for

applications to 400 °F (204 °C).

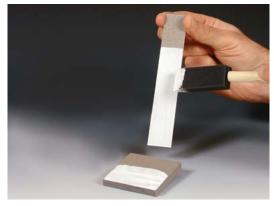
CP2080 Two-part, medium viscosity, clear Novolac-epoxy

with exceptional abrasion and corrosion resistance for continuous operations to 300 °F (150 °C) and

intermittent use to 400 °F (204 °C).

CP2090 Two-part, low viscosity, room temperature curing, epoxy

sealer for continuous applications to 400 °F (204 °C).


CP4010-S1-LV Single part, low viscosity, aluminum-rich, heat-curable, silicone sealer offering exceptional outdoor weathering

resistance to 1100 °F (593 °C).

CP40XX-S2-HT Single part, low viscosity, room temperature curing, flame resistant, dielectric, silicone-glass-ceramic sealer

offering continuous temperature resistance to 1500 °F (816 °C) and intermittent resistance to 1800 °F (982 °C).

CP4000-S2-HT Black
CP4020-S2-HT Navy Gray
CP4040-S2-HT Navy White
CP4080-S2-HT Navy Yellow

Ceramacoat[™] 503-VFG-C-WHT applied to thermal spray substrate.

Ceramabind[™] 542 seals thermal spray on sensor.

CP2000 seals thermal spray on small heater.

CP2000 seals thermal spray on motor housing.

30

HIGH TEMPERATURE THERMAL SPRAY SEALANTS

Product Number	542	503-VFG-C ⁶	634-ZOS	CP2000	CP2040	CP2080	CP2090	CP4010-S1-LV	CP4000-S2-HT ⁷		
Tradename	Ceramabind™ Ceramacoat™					Corr-	Corr-Paint™				
Туре	Inorganic			Urethane	Phenolic	Novola	с-Ероху	Silicone			
Color (cured)	Clear	White	Off-White	Gloss Black	Clear	Clear	Amber	Aluminum	Black		
Maximum Temperature, °F (°C)	3000 (1650)	3000 (1650)	3000 (1650)	400 (204)	400 (204)	400 (204)	400 (204)	1100 (593)	1800 (982)		
No. Components	1	1	1	1	1	2	2	1	1		
Mix Ratio, by Weight (by Volume)	NA	NA	NA	NA	NA	100:40 (2:1)	100:25	NA	NA		
Viscosity, cP1	35–45	5,000–7,000	500–1,500	200–240	5–15	600-1000	100–200	100–150	150–500		
Specific Gravity, g/cc	1.47	2.34	2.00	1.05	0.87	1.10	1.10	0.99	1.50		
Solids by Weight, %	41.0	76.0	64.8	67.0	10.0	100.0	100.0	23.9	73.0		
Solids by Volume, %	22.0	53.7	30.6	49.0	21.0	100.0	100.0	17.1	70.0		
WFT, mils (microns) ²	4.54 (115.3)	1.86 (47.3)	3.27 (83.1)	2.00 (50.5)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	5.8 (14850)	1.43 (36.3)		
DFT, mils (microns) ³	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	0.16 (4.1)	1.00 (25.4)	1.00 (25.4)	1.0 (25.4)	1.00 (25.4)		
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft ² /gal (m ² /liter)	353 (8.7)	861 (21.1)	490 (12.0)	722 (17.7)	260 (6.4)	1604 (39.3)	1604 (39.3)	274 (6.7)	1122 (27.5)		
Curing, Min Air Set, hrs ⁵	1.0-2.0	1.0-2.0	1.0-2.0	0.5	0.5	8.0	1.0	1.0	1.0		
Curing, Heat Cure, °F, hrs	200/1 + 500/1 + 700/1	200/1 + 500/1 + 700/1	200/2 + 350/1 + 500/1	RT/24 or 250/1	300/.15	RT/24 or 150/2	RT/48 or 150/3	480/0.75	RT/24-48		
Application Temperature, °F	50-90	50–90	50–90	50–90	50–90	50-90	50-90	50–120	50–90		
Thinner	Water	503-T, Water	634-ZOS-T, Water	Hi-Flash Naptha	n-Butanol	Xylene	Xylene	PM Acetate	T-Butyl Acetate		
Flash Point, °F/°C	NA	NA	> 200 (93)	140 (60)	73 (23)	> 200 (93)	> 200 (93)	111 (44)	117 (47)		
Volatiles, lbs/gal	0.00	0.00	0.05	2.86	5.74	0.0	0.0	6.6	2.3		
Shelf Life, months	6	6	6	12	12	12	12	6	3		
Storage Temperature, °F	55-85	55–85	55–85	40-80	40-50	40-90	40–90	40–90	40-90		

Reference Notes

- ¹ Viscosity is measured using a Brookfield LV Viscometer; spindle and speed selection vary depending on the product.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during mixing and application.
- Where a value is provided for "Min Air Set", it is recommended to set the coating at room temperature for, at minimum, the specified time prior to curing.

Ceramacoat™ 503-VFG-C

⁶ Available in the following standard colors:

 503-VFG-C-WHT
 White

 503-VFG-C-BLK
 Black

 503-VFG-C-BLU
 Blue

 503-VFG-C-RED
 Red

 503-VFG-C-ORG
 Orange

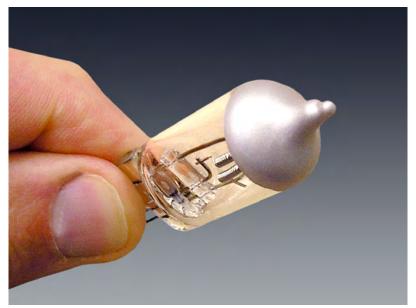
Corr-Paint™ CP40XX-S2-HT

⁷ Available in the following standard colors: CP4000-S2-HT Black

CP4000-S2-HT Black
CP4020-S2-HT Navy Gray
CP4040-S2-HT Navy White
CP4080-S2-HT Navy Yellow

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Quartz should be sandblasted whenever possible. Smooth metal surfaces should be sandblasted or etched using Aremco's Corr-Prep® CPR2000.


Abbreviations

NA Not Applicable
NR Not Required
DFT Dry Film Thickness
WFT Wet Film Thickness

HIGH TEMPERATURE COATINGS FOR CERAMICS, GLASS & QUARTZ

Technical Bulletin A5-S4

Lamp-Coat™ LC4010-GL applied to auto headlamp.

Lamp-Coat™ LC4040-SG applied to IR heater.

Ceramacoat™ 845-GLT applied to auto headlamp.

Quartz-Coat[™] 850 applied to quartz IR heater tube.

PRODUCT HIGHLIGHTS

Ceramic-Inorganic

845 Single part, waterborne, silicon-filled, phosphate-bonded, brown-black coating for glass and quartz to 2000 °F (1093 °C). Primarily used for marking ceramic parts and coating automotive headlamps, stadium lighting and quartz vessels for the semiconductor industry. Standard viscosity is 200-400 cP; a higher viscosity coating, 845-HV, in the range of 500-800 cP is available upon request. Additional colors below are offered.

845-BLK Jet Black 845-BLU Cobalt Blue 845-GRY Light-Gray 845-GLT Light-Green 845-GDK Dark-Green 845-SIL Silver 845-WHT White

Glass

613 Glass-filled adhesive/sealer for use with porous ceramics and refractories to 1150 °F (620 °C).

617 Glass-filled adhesive/sealer for use with porous ceramics and refractories to 1500 °F (816 °C).

850 Glass-ceramic filled, white reflective coating for glass and quartz to 1500 °F (816 °C).

Silicone

LC4010-BT Aluminum-filled coating for application over black top coated headlamps to 1020 °F (550 °C).

LC4010-GL Aluminum-filled coating for application directly over uncoated headlamps to 1020 °F (550 °C).

LC4040-SG White reflective coating for use on mercury vapor lamps and other high temperature glass and quartz components to 1200 °F (649 °C).

HIGH TEMPERATURE COATINGS FOR CERAMICS, GLASS & QUARTZ

Туре	INORGANIC-CERAMIC										GLASS		SILICONE			
Product Number	845	845-HV	845-BLK	845-BLU	845-GRY	845-GLT	845-GDK	845-SIL	845-WHT	613	617	850	LC4010-BT	LC4010-GL	LC4040-SG	
Tradename	Quartz	-Coat™	Ceramacoat™							Aremco-Seal™		Quartz-Coat™		Lamp-Coat™		
Color (cured)	Brown-Black	Brown-Black	Jet Black	Blue	Gray	Light Green	Dark Green	Matte Silver	Off-White	Light Gray	Clear	White	Silver	Silver	White	
Maximum Temperature, °F (°C)	2000 (1093)	2000 (1093)	1500 (816)	1500 (816)	1500 (816)	1500 (816)	1500 (816)	1500 (816)	1500 (816)	1150 (620)	1500 (816)	1600 (871)	1020 (550)	1020 (550)	1200 (649)	
No. Components	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Viscosity, cP1	200-400	500-800	1,000-1,500	500–1,000	400–700	750–1,250	800–1,000	400–900	400–700	1,000–2,000	1,100-1,500	500-1,000	40-50	300-400	250–500	
Specific Gravity, g/cc	1.44	1.51	1.66	1.64	1.65	1.66	1.67	1.46	1.83	1.39	1.45	1.84	1.07	1.05	1.70	
Solids by Weight, %	50.1	52.8	52.9	50.9	51.8	52.9	52.9	44.4	41.3	54.0	51.3	61.3	57.0	35.8	70.9	
Solids by Volume, %	22.9	31.9	32.0	23.6	25.2	26.7	26.7	23.1	22.9	41.6	40.5	31.4	49.5	31.9	52.7	
WFT, mils (microns) ²	3.24 (82.3)	3.13 (79.6)	2.90 (73.8)	4.24 (107.8)	3.97 (100.8)	3.74 (95.0)	3.74 (95.0)	4.34 (110.1)	4.12 (104.6)	2.40 (61.0)	2.47 (62.7)	3.18 (80.8)	2.02 (51.3)	3.13 (79.6)	1.90 (48.2)	
DFT, mils (microns) ³	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	1.00 (25.4)	
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft ² /gal (m ² /liter)	495 (12.2)	512 (12.6)	552 (13.6)	378 (9.3)	404 (9.9)	429 (10.5)	429 (10.5)	370 (9.1)	389 (9.6)	668 (16.4)	650 (15.9)	504 (12.4)	794 (19.5)	512 (12.6)	845 (20.8)	
Curing, Min Air Set, min ⁵	10	10	10	10	10	10	10	10	10	30–60	30	30	10	5	60	
Curing, Heat Cure, °F, min ⁶	200, 10 + 900, 5	1150–1250, 30	200, 30 + 350, 60 + 1830, 1	1650, 15	200, 15 + 900, 10	200, 30 + 900, 10	200, 60 + 450, 60 + 1300, 15									
Application Temperature, °F	50-90	50-90	50–90	50–90	50–90	50–90	50–90	50–90	50–90	50–90	50-90	50–90	50–120	50–120	50–120	
Thinner	845-T	Water	Water	Water	PM Acetate	Ethanol	PM Acetate									
Flash Point, °F/°C	NA	NA	NA	NA	~ 118 (48)	~ 118 (48)	~115 (46)									
Volatiles, lbs/gal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.7	6.1	3.8	
Shelf Life, months	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
Storage Temperature, °F	55–85	55–85	55–85	55–85	55–85	55–85	55–85	55–85	55–85	40–90	40-90	40–90	40–90	40–90	40–90	

Reference Notes

Abbreviations

NA Not Applicable
NR Not Required
DFT Dry Film Thickness
WFT Wet Film Thickness

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Quartz should be sandblasted whenever possible. Smooth metal surfaces should be sandblasted or etched using Aremco's Corr-Prep[®] CPR2000.

¹ Viscosity is measured using a Brookfield LV Viscometer; spindle and speed selection vary depending on the product.

² Estimated Wet Film Thickness (WFT).

³ Recommended Dry Film Thickness (DFT).

⁴ Actual coverage will vary depending on material losses during mixing and application.

⁵ Where a value is provided for "Min Air Set", it is recommended that the coating set at room temperature for, at minimum, the specified time prior to curing.

⁶ Recommended ramp rate is 10 °F per minute.

HIGH TEMPERATURE REFRACTORY COATINGS

Technical Bulletin A5-S5

Aremco's refractory coatings offer the ultimate protection of high temperature components used in the processing of ceramics, glass, metals, and plastics.

FEATURES

- · Ultra Hi-Temp Resistance
- Non-Wetted by Molten Metals, Salts, Glass & Plastics
- · High Lubricity for Easy Part Release
- Minimizes Cast Surface Defects
- Increases Mold & Die Life
- For Use in Oxidizing, Reducing & Vacuum Atmospheres

APPLICATIONS

- · Composite Forming
- Glass Forming
- Metal Casting
- · Injection Molding
- · Ceramic Hot-Pressing
- Metal Powder Sintering
- Welding
- Brazing

PRODUCT HIGHLIGHTS

Graphi-Coat™ 623

This patented coating is a two-part, silica-bonded, titanium diboride filled, oxidation resistant coating for protecting graphite crucibles, electrodes, and heat-treating fixtures to 2000 °F (1093 °C).

Pyro-Paint™ 634-AL

This high purity 99+% alumina, two-part coating seals alumina fiberboards and shapes to fill porosity and resist molten metals to 3200 °F (1760 °C). Increases heat reflectivity to improve furnace efficiency by reducing ramp up times.

Pyro-Paint™ 634-AL-HC

This high purity 99+% alumina, single-part coating bonds well to carbon and stainless steel, providing excellent oxidation protection. Also suitable for producing a hard-coat on alumina fiberboards. For temperatures to 3200 °F (1760 °C).

Pyro-Paint™ 634-ALP

This phosphate-bonded, single-part alumina coating bonds exceptionally well to dense refractories, providing high abrasion and corrosion resistance for operating temperatures to 3200 °F (1760 °C).

Pyro-Paint™ 634-AS and 634-AS1

These alumina-silica, single-part coatings increase the durability of refractory fiberboards by sealing the substrate to minimize dusting and resist wetting by non-ferrous metals to 2300 °F (1260 °C).

Pyro-Paint™ 634-BN and 634-BNSC

These lubricious, boron nitride, single-part coatings are used to seal refractory fiberboards and metals from wetting by non-ferrous metals, salts, glasses and plastics. Select 634-BN for hard-coat and 634-BN(SC) for a more consumable soft-coat.

Pyro-Paint™ 634-GR

This single-part graphite coating improves parting of aluminum permanent molds, non-sticking in glass forming, and lubrication and stop-off in metalworking and wire drawing. Provides superior release, surface finish and mold protection.

Pyro-Paint™ 634-SIC

This single-part, silicon carbide coating improves the oxidation resistance of graphite crucibles, electrodes, and heat-treating fixtures to $2550 \, ^{\circ}\text{F}$ (1400 $^{\circ}\text{C}$).

Pyro-Paint™ 634-SIC-CS

This single-part, silicon carbide coating resists oxidation of metals at temperatures to 2300 $^{\circ}$ F (1280 $^{\circ}$ C).

Pyro-Paint™ 634-YO

This single-part, yttrium oxide coating protects graphite, ceramic and metals, exposed to reactive metals such as titanium, uranium and their alloys under inert or vacuum atmospheres to 2732 °F (1500 °C).

Pyro-Paint™ 634-ZO

This single-part, zirconium oxide coating produces a hard, oxidation resistant coating on carbon and stainless steel and a range of refractory metals including molybdenum, platinum, rhodium, and titanium to 3270 °F (1800 °C). Good for sealing porous refractories and protecting resistance heating elements from oxidation and residue buildup that causes arcing and reduced element life.

HIGH TEMPERATURE REFRACTORY COATINGS PROPERTIES

Part Number	623	634-AL	634-AL-HC	634-ALP	634-AS	634-AS-1	634-BN	634-BNSC	634-GR	634-SIC	634-SIC-CS	634-YO	634-ZO
Principal Application	Inhibits Graphite Oxidation	Soft-Coat Sealer for Fiberboard	Hard-Coat for Metals & Fiberboard	Sealer for Dense Refractory		Refractory board	Resists Wetting of Non-Ferrous Alloys on Refractories		Resists Wetting of Glass, Metal	Inhibits Graphite Oxidation	Resists Metal Oxidation	Resists Reactive Metals	Resist Metal Oxidation
Major Constituent	Titanium DiBoride	Aluminum Oxide		Alumina-Silica		Boron Nitride		Graphite	Silicon	Carbide	Yttrium Oxide	Zirconium Oxide	
Color	Gray	White	White	White	Off-White	White	White	White	Black	Gray	Light Gray	Off-White	Off-White
Temperature Limit, °F (°C)	2000 (1093)	3200 (1760)	3200 (1760)	3200 (1760)	2300 (1260)	2300 (1260)	1560 (850) ¹	1560 (850) ¹	2200 (1200)	2550 (1400)	2300 (1260)	2732 (1500)	3270 (1800)
No. Components	2	2	1	1	1	1	1	1	1	1	1	1	1
Mix Ratio ²	60:40	75:25	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Viscosity, cP	200–400	100–200	200–500	5,000–7,000	500–800	10,000– 20,000	500–1,500	10–100	100–250	750–2,000	150–500	200–400	1,000–2,000
Specific Gravity, g/cc	2.15	2.46	2.42	2.38	1.55	1.60	1.15	1.20	1.24	2.00	1.85	1.55	2.02
Solids by Weight, %	78.7	81.3	81.5	76.0	64.3	64.9	19.8	30.0	47.5	68.2	72.0	45.0	59.2
Solids by Volume, %	52.7	56.1	56.5	53.7	41.1	40.7	18.0	13.3	31.6	42.0	47.4	14.0	29.6
WFT, mils (microns) ⁶	1.9 (48.2)	1.8 (45.3)	1.8 (45.3)	1.9 (47.3)	2.4 (61.7)	2.5 (62.4)	5.6 (141.5)	7.5 (190.7)	3.2 (80.5)	2.4 (60.5)	2.1 (53.5)	7.1 (180.9)	3.4 (86.0)
DFT, mils (microns) ⁷	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)
Theoretical Dry Film Coverage @ 1 mil, ft²/gal (m²/liter)	845 (20.7)	899 (22.1)	899 (22.1)	861 (21.1)	660 (16.2)	653 (16.0)	288 (7.1)	214 (5.3)	506 (12.4)	674 (16.5)	761 (18.7)	225 (5.5)	474 (11.6)
Recommended Curing Min Air Set, hrs Hours Cure °F/hrs³	1 1400/0.25	2 200/2	1 200/2, 800/1	1 200/2, 800/1	2 200/2	2 200/2	2 200/2	2 200/2	2 200/2	1 200/2, 800/1	1 200/2, 500/1	0.5 200/1	2 200/2
Application Temperature, °F	50-90	50-90	50-90	50-90	50-90	50-90	50-90	50-90	50-90	50-90	50-90	50-90	50–90
Thinner ⁴	623-T	634-AL-T	634-AL-HC-T	634-ALP-T	634-AS-T	634-AS-T	634-BN-T	634-BNSC-T	634-GR-T	634-SIC-T	634-SIC-CS-T	H₂O	634-ZO-T
Coating pH	8-9.5	4–5	3–4	2–3	8–9.5	8–9.5	11–12	4–5	8–9	2–3	9-10	7–8	11–12
Flash Point, °F	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Weight/Gallon, lbs ⁵	12.5	12.0	20.0	16.5	12.0	12.5	9.5	10.0	10.0	16.5	15.0	12.0	14.5
Shelf Life, months	6	6	6	6	6	6	6	6	6	6	6	6	6
Storage Temperature, °F	40-90	40–90	40-90	40-90	40-90	40–90	40–90	40-90	40–90	40–90	40–90	40–90	40–90

Reference Note

 $^{1} \ \text{Temperature limit applies to oxidizing atmospheres only. Can be used in vacuum/inert atmospheres to 2000 \, ^{\circ}\text{C}.}$

Abbreviations

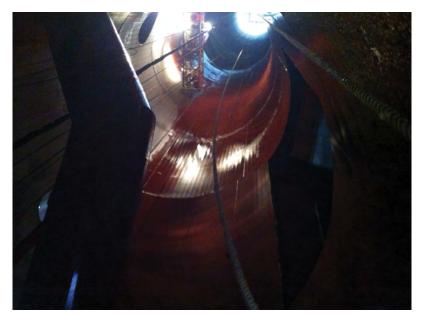
N/A Not Applicable

² Mix ratio is Powder: Liquid. Ratios may be altered as required to adjust viscosity.

³ A short cure is recommended, however, most of these products can be air set then ramped up to operating temperature immediately.

⁴ Distilled water may also be used to thin all products. Use 1–2% distilled water by weight.

⁵ For two-part systems, this only refers to the weight per gallon for the powder portion of the mixture.


⁶ Estimated Wet Film Thickness (WFT).

⁷ Recommended Dry Film Thickness (DFT).

CORROSION RESISTANT EPOXY & URETHANE COATINGS

Technical Bulletin A6-S1

Corr-Paint™ CP2050-LF coats flare stack.

Aremco's Corr-Paint™ epoxy and urethane-based coatings are used for producing corrosion and wear resistant barriers to 500 °F. Typical applications include tanks, pipelines, boilers, precipitators, scrubbers, bag houses, cyclones, hoppers and other process equipment used in the power, pulp and paper, and chemical processing industries.

Corr-Paint™ CP2060

Corr-Paint™ CP2060 coats pump housing.

PRODUCT HIGHLIGHTS

Urethane

CP2000 Jet Black CP2010 Aluminum CP2020 Gray

Epoxy-Phenolics

CP2050-LF Large-Fiber Reinforced

CP2050-FF Fine-Fiber Reinforced CP2050-NF Unfilled

Novolac-Epoxies CP2060 SiC Filled, Hi-Build, 500 °F • Cures at Room Temperature

CP2070 CP2075 Gray, Hi-Build, 400 °F

FEATURES

- · Single-Part, No Mixing
- · Low Viscosity
- · Cures at Room Temperature
- · High Wear Resistance
- Excellent Salt Spray Resistance
- Maximum Temperature, 400 °F
- Two-Part Systems
- High Viscosity for Thick Depositions
- · Cures at Room Temperature
- Excellent Corrosion Resistance
- · Excellent Wear Resistance
- Maximum Use Temperature, 500 °F
- Two-Part Systems
- Gray, Low Viscosity, 300 °F Excellent Corrosion Resistance
 - · Excellent Wear Resistance

Corr-Paint™ CP2000 coats motor housing.

36

CORROSION PROTECTIVE URETHANE & EPOXY COATINGS PROPERTIES

CHEMICAL RESISTANCE CHART

Туре	e		URETHANE		EPOXY-PHENOLIC		NOVOLAC-EPOX	Y
Proc	duct Number	CP2000	CP2010	CP2020	CP2050- <u>XX</u> 1	CP2060 ¹	CP2070	CP2075
Cold	or (cured)	Gloss Black	Aluminum	Gloss Gray	Brown-Red	Gray	Gray	Gray
Tem	p. Continuous,°F(°C)	400 (204)	400 (204) ²	400 (204) ²	400 (204)	500 (260)	300 (150) ⁷	400 (204)
No.	Components	1	1	1	2	2	2	2
Mix	Ratio, by Weight	NA	NA	NA	1:1	100 : 8	100:42 (2:1 Vol)	100:26 (3:1 Vol)
Visc	osity, cP	200–240	300–600	200–500	Paste	Paste	800–1000	1000–2000
Spe	cific Gravity, g/cc	1.05	1.08	1.08	1.60	1.90	1.10	1.10
Soli	ds by Weight, %	67.0	70.0	72.0	100.0	100.0	100.0	100.0
Solids by Volume, %		49.0	66.0	77.0	100.0	100.0	100.0	100.0
WFT, mils (microns) ³		4.0 (101.6)	4.0 (101.6)	4.0 (101.6)	50+ (1270.0)	50+ (1270.0)	7.0 (177.8)	7.0 (177.8)
DFT, mils (microns) ⁴		2.0 (50.8)	2.6 (67.1)	3.1 (78.7)	50+ (1270.0)	50+ (1270.0)	7.0 (177.8)	7.0 (177.8)
	pretical Dry Film Coverage ⁵ nil, ft²/gal (m²/liter)	722 (17.7)	1058 (25.9)	1235 (30.3)	1604 (39.3)	1604 (39.3)	1604 (39.3)	1604 (39.3)
Prim	ner	NR	NR	NR NR		NR	NR	NR
g	Touch, hrs	4-6	4–6	4-6 4-6 6-8		4	5	5
Orying	Handling, hrs	6–8	6–8	6–8	12–14	6–8	8	8
	Recoat, (min/max), hrs	3/7	6/12	3/7	4/48	4/8	4/8	4/8
Curing	Min Air Set, hrs ⁶	0.5	1	0.5	2	8	8	8
ਹੈ	Cure, °F/hrs	RT/24 or 250/1	RT/24 or 250/1	RT/24 or 250/1	RT/48 or 175/4	RT/48 or 250/6	RT/24	RT/24-48 or 175/4
Арр	lication Temp., °F	50-90	50–90	50-90	50–90	50-90	50–90	50–90
Thin	iner	Hi-Flash Naptha	Hi-Flash Naptha	Hi-Flash Naptha	NR	NR	Xylene	Xylene
Pot	Life, hrs at room temp.	NA	NA	NA	0.70	0.75 (500g)	0.35 (200g)	0.5 (200g)
Flas	h Point, °F (°C)	140 (60)	140 (60)	140 (60)	> 200 (93)	> 200 (93)	> 200 (93)	> 200 (93)
VOC's, lbs/gal		2.86	3.00	2.80	0.00	0.00	0.00	0.00
Shel	f Life @RT, months	12	12	12	12	12	12	12
Stor	age Temperature, °F	40-90	40–90	40–90	40–90	40-90	40–90	40-90

Reference Notes

Technical Notes for Epoxy Coatings	CP2050-XX	CP2060	CP2070	CP2075
Lap Shear Strength to Aluminum, psi				
25 °C	2,700	2,300	2050	2260
65 °C	_	_	1900	2100
100 °C	1,800	2,000	1250	1420
150 °C	900	1,200	225	430
175 °C	300	900	_	_
Flexural Strength, psi	13,400	11,500	12,000	12,000
Compressive Strength, psi	10,300	12,000	8,500	8,500
Elongation, %	3	2	< 2	< 2
Hardness, Shore D	86	90	85	85

² CP2010 will begin to discolor at 300 °F.

⁶ Where a value is provided for "Min Air Set", it is recommended that the coating set at room temp. for, at minimum, the specified time prior to curing.

⁷Withstands intermittent service temperatures of material losses during mixing and application. 350–400 °F if cured for 2 hours at 185 °F.

Surface	Preparat	ion Notes
---------	----------	-----------

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Smooth metal surfaces should be abrasive blasted to an SSPC-SP10 near white blast. Remove abrasive residue using air pressure; do not clean with organic solvents

Aremco's Corr-Prep™ CPR2000 is recommended as an alternative when sandblasting is not possible. This is a specially formulated, water-based, zinc phosphate metal etching solution that is non-toxic, non-flammable, noncaustic, and non-corrosive. It etches metal to provide surface profile for superior coating adhesion to aluminum, galvanized metal, steel, and stainless steel. It also helps to improve longterm corrosion protection. Application is simple—just brush or spray liquid on the substrate, allow to sit for 20-30 minutes, then rinse off and dry substrate thoroughly prior to coating.

Chemical	%	CP2000	CP2050	CP2060	CP2070	CP2075
ACIDS						
Acetic Acid	20%	В	В	В	В	В
Acetic Acid	80%	В	В	В	В	В
Hydrochloric Acid	10%	А	А	А	А	А
Hydrochloric Acid	20%	Α	А	А	А	А
Nitric Acid	10%	А	А	А	А	А
Nitric Acid	20%	В	В	В	В	В
Nitric Acid	50%	D	D	D	D	С
Nitric Acid	100%	D	D	D	D	В
Phosphoric Acid	< 40%	В	А	А	А	А
Phosphoric Acid	40–100%	D	С	С	С	С
Sulfuric Acid	10%	А	А	А	А	А
Sulfuric Acid	10-75%	С	В	В	В	В
Sulfuric Acid	75–100%	D	D	D	D	С
BASES						
Potassium Hydroxide		А	А	Α	А	А
Sodium Hydroxide	20%	А	А	Α	А	А
Sodium Hydroxide	50%	А	А	Α	А	А
Sodium Hydroxide	80%	А	А	А	А	А
FUELS & SOLVENTS	5					
Acetone		В	В	В	В	В
Alcohol		А	А	А	А	А
Crude Oil		А	А	А	А	А
Diesel		А	Α	А	А	Α
Gasoline		А	А	А	А	А
Heptane		А	Α	А	А	А
Jet Fuel		А	Α	А	А	А
Kerosene		А	А	А	А	А
Methyl Ethyl Ketone		В	В	В	В	В
Methylene Chloride		В	В	А	А	А
Toluene		А	А	Α	А	А
Xylene		А	А	А	А	Α

Abbreviations

NA Not Applicable Not Required DFT Dry Film Thickness WFT Wet Film Thickness Room Temperature

Key

- A No Effect or Excellent
- B Minor Effect or Good
- C Moderate Effect or Fair
- D Severe Effect or Not Recommended

³ Estimated Wet Film Thickness (WFT).

⁴ Recommended Dry Film Thickness (DFT).

⁵ Actual coverage will vary depending on

HIGH TEMPERATURE SILICONE-POLYESTER COATINGS

Technical Bulletin A6-S2

Corr-Paint™ CP4000-S

Corr-Paint™ CP4040-S

Corr-Paint™ CP4040-S

Aremco's Corr-Paint™ CP40xx-S series coatings are formulated using an advanced silicone-polyester resin combined with inorganic fillers and pigments to offer continuous temperature resistance to 600 °F (316 °C) and intermittent resistance to 800 °F (427 °C).

These coatings are single-part, heat curable systems that adhere to a wide range of materials including metals, ceramics, glass, quartz, and refractories, and offer outstanding resistance to outdoor weathering, UV light, salt spray corrosion, oxidation, detergents, and thermal shock.

PRODUCT HIGHLIGHTS

- · Single-Part, No Mixing
- Low Viscosity
- Maximum Use Temperature, 600 °F (316 °C)
- Intermittent Use Temperature, 800 °F (427 °C)
- · Bonds to Ceramics, Glass, Quartz, Metals
- Excellent Resistance to Moisture & Salt Spray
- Resists Thermal Shock
- · Resists Ultraviolet Light

AVAILABLE COLORS*

CP4060-S Red

^{*} All colors are matte finish. The colors represented here are approximate and the actual product color may vary.

TYPICAL APPLICATIONS

- Bag Houses
- Boiler Casings
- Chimneys
- Cyclones
- Ducting
- Heaters
- Heat Exchangers Exhaust Systems
- Engines

- Furnaces
- Ovens
- Kilns
- Lighting Fixtures
- · Process Vessels
- Reformers
- Scrubbers
- Stacks
- Turbochargers

HIGH TEMPERATURE SILICONE-POLYESTER COATINGS PROPERTIES

Туре					SILICONE-F	POLYESTER				
Product Number	CP4000-S	CP4010-S	CP4020-S	CP4040-S	CP4050-S	CP4060-S	CP4070-S	CP4080-S	CP4090-S	CP4095-S
Color (cured)	Black	Aluminum	Gray	White	Green	Red	Blue	Yellow	Brown	Orange
Temperature Continuous, °F (°C)	600 (316)	600 (316)	600 (316)	600 (316)	600 (316)	600 (316)	600 (316)	600 (316)	600 (316)	600 (316)
Temperature Intermittent, °F (°C)	800 (427)	800 (427)	800 (427)	800 (427)	800 (427)	800 (427)	800 (427)	800 (427)	800 (427)	800 (427)
No. Components	1	1	1	1	1	1	1	1	1	1
Viscosity, cP ¹	400–600	300-400	200–400	300–500	250–350	500–700	150–250	300–500	400–600	550-750
Specific Gravity, g/cc	1.45	1.00	1.42	1.37	1.46	1.47	1.43	1.40	1.45	1.40
Solids by Weight, %	69.9	37.0	62.1	42.1	62.1	62.1	62.1	62.1	62.1	62.1
Solids by Volume, %	57.7	36.7	58.5	49.2	57.4	57.4	59.0	57.7	58.6	58.9
WFT, mils (microns) ²	1.73 (44.0)	2.73 (69.2)	1.71 (43.4)	2.03 (51.6)	1.74 (44.3)	1.74 (44.3)	1.69 (43.0)	1.73 (44.0)	1.71 (43.3)	1.70 (43.2)
DFT, mils (microns) ³	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft²/gal (m²/liter)	925 (22.7)	589 (14.5)	938.0 (23.0)	789.7 (19.4)	920.3 (22.6)	921.1 (22.6)	946.7 (23.2)	925.6 (22.7)	940 (23.1)	944 (23.2)
Primer ⁵	NR									
Touch, hrs	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2
Handling, hrs	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4
Recoat, (min/max), hrs	1/24	1/24	1/24	1/24	1/24	1 / 24	1/24	1 / 24	1/24	1/24
Min Air Set, hrs ⁶ Cure, °F/hrs ^{7,8}	1	1	1	1	1	1	1	1	1	1
Cure, °F/hrs ^{7,8}	450 / 1 or 480 / .75									
Application Temperature, °F	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120
Thinner	PM Acetate									
Pot Life, hrs at room temp.	NA									
Flash Point, °F (°C)	118 (48)	115 (46)	115 (46)	115 (46)	115 (46)	115 (46)	115 (46)	115 (46)	115 (46)	115 (46)
VOC's, lbs/gal	3.6	5.3	3.6	3.4	3.7	3.7	3.6	3.7	3.6	3.6
Shelf Life @RT, months	6	6	6	6	6	6	6	6	6	6
Storage Temperature, °F	40–90	40–90	40–90	40–90	40–90	40–90	40–90	40–90	40–90	40–90

Reference Notes

- ¹ Viscosity is measured using a Brookfield LV Viscometer, LV3 Spindle @ 30 RPM.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during mixing and application.
- ⁵ Primer is only recommended for exterior applications in which salt fog or moisture are present.
- ⁶ Where a value is provided for "Min Air Set", it is recommended to set the coating at room

- temperature for, at minimum, the specified time prior to curing.
- Adequate ventilation is required when curing these products as some outgassing will occur.
- ⁸ Curing is recommended but not absolutely required if the system is raised slowly to a minimum of 450 °F within 24–48 hours of application and not exposed to high moisture or rain during this initial dwell period.

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Smooth metal surfaces should be abrasive blasted to an SSPC-SP6 near white blast. Remove abrasive residue using air pressure; do not clean with organic solvents.

Aremco's Corr-Prep™ CPR2000 is recommended as an alternative when sandblasting is not possible. This is a specially formulated, water-based, zinc phosphate metal etching solution that is non-toxic, non-flammable, non-caustic, and non-corrosive. It etches metal to provide surface profile for superior coating adhesion to aluminum, galvanized metal, steel, and stainless steel. It also helps to improve long-term corrosion protection. Application is simple — just brush or spray liquid on the substrate, allow to sit for 20–30 minutes, then rinse off and dry substrate thoroughly prior to coating.

Application Notes: Mix thoroughly before use to redisperse fillers and pigments. Apply using a brush, roller or spray gun. When spraying, a maximum dry film thickness of 2 mils (0.002") can be achieved by applying two coats. Recommended fluid nozzle diameter is 40-50 mils, atomizing pressure of 40-50 psi, and distance from work of 8-10". Adequate ventilation is required when applying and curing the coating. Read Safety Data Sheet for further safety instructions.

Abbreviations

NA Not Applicable
NR Not Required
DFT Dry Film Thickness

WFT Wet Film Thickness RT Room Temperature

Refer to Price List for complete order information.

HIGH TEMPERATURE SILICONE RESIN COATINGS

Technical Bulletin A6-S3

Aremco's Corr-Paint™ CP40xx-S1 series coatings are formulated using an advanced solvent-based silicone resin combined with inorganic fillers and pigments to offer continuous temperature resistance to 1100 °F (593 °C) and intermittent resistance to 1200 °F (649 °C). A higher temperature formulation, CP4000-S1-HT, offers continuous operation to 1400 °F (593 °C) and intermittent resistance to 1800 °F (982 °C).

These coatings are single-part, heat curable systems that adhere to a wide range of materials including metals, ceramics, glass, quartz, and refractories, and offer outstanding resistance to outdoor weathering, UV light, salt spray corrosion, oxidation, some chemicals, and thermal shock.

PRODUCT HIGHLIGHTS

- Single-Part, No Mixing
- Low Viscosity
- Maximum Use Temperature, 1100–1400 °F (593–760 °C)
- · Good Chemical Resistance
- · Bonds to Ceramics, Glass, Quartz, Metals
- · Excellent Resistance to Moisture & Salt Spray
- Resists Thermal Shock
- · Resists Ultraviolet Light
- Solvent-Based

Corr-Paint™ CP4000-S1

AVAILABLE COLORS*

^{*} All colors are matte finish. The colors represented here are approximate and the actual product color may vary.

TYPICAL APPLICATIONS

- Bag Houses
- Boiler Casings

Green

- Chimneys
- Cyclones
- Ducting
- Heaters
- Heat ExchangersExhaust Systems
- Engines

 Furnaces, Ovens, Kilns

Orange

- Lighting Fixtures
- Process Vessels
- Reformers
- Scrubbers
- Scrubber
- Stacks
- Turbochargers

40

HIGH TEMPERATURE SILICONE RESIN COATINGS PROPERTIES

Pro	duct Number	CP4000-S1	CP4000-S1-HT	CP4010-S1	CP4020-S1	CP4040-S1	CP4050-S1	CP4055-S1	CP4060-S1	CP4070-S1	CP4080-S1	CP4090-S1	CP4095-S1
Col	or (cured)	Black	Black	Aluminum	Gray	White	Green	Pale Green	Red	Blue	Yellow	Brown	Orange
Ten	nperature Continuous, °F (°C)	1100 (593)	1400 (760)	1100 (593)	1100 (593)	1100 (593)	1100 (593)	1100 (593)	1100 (593)	1100 (593)	1100 (593)	1100 (593)	1100 (593)
No.	Components	1	1	1	1	1	1	1	1	1	1	1	1
Vis	cosity, cP ¹	250-500	900–1200	250-500	150-250	250–500	300-500	500–1000	600–800	350–500	300–500	300–500	500–700
Spe	ecific Gravity, g/cc	1.49	1.61	1.00	1.35	1.34	1.36	1.39	1.34	1.35	1.36	1.38	1.37
Sol	ids by Weight, %	57.1	79.0	41.0	57.1	57.1	57.1	59	57.4	56.6	56.6	56.6	56.6
Sol	ids by Volume, %	42.5	53.6	42.4	44.4	44.4	44.3	42.8	45.1	44.3	43.4	43.2	43.4
	t Film Thickness, Estimate, s (microns)	2.4 (59.8)	1.9 (47.4)	2.4 (59.9)	2.3 (57.3)	2.3 (57.2)	2.3 (57.4)	2.4 (59.8)	2.2 (56.4)	2.3 (57.3)	2.3 (58.6)	2.3 (58.6)	2.3 (58.6)
	Film Thickness, Estimated, s (microns)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)
	eoretical Dry Film Coverage mil, ft²/gal (m²/liter)	681 (16.7)	860 (21.1)	680 (16.7)	711 (17.5)	712 (17.5)	710 (17.4)	687 (16.9)	723 (17.7)	711 (17.4)	696 (17.1)	694 (17.0)	697 (17.1)
<u>Б</u>	Touch, hrs	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2
Drying	Handling, hrs	2–4	2–4	2–4	2-4	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4
	Recoat, (min/max), hrs	1/24	1/24	1 / 24	1/24	1/24	1/24	1 / 24	1 / 24	1/24	1/24	1/24	1 / 24
	Minimum Air Set, hrs ³	1	1	1	1	1	1	1	1	1	1	1	1
Curing	Cure Schedule, °F/hrs ^{4,5}	480 / .75	200 / .25 480 / .25 1200 / .25	480 / .75	480 / .75	480 / .75	480 / .75	480 / .75	480 / .75	480 / .75	480 / .75	480 / .75	480 / .75
Арр	olication Temperature, °F	50–120	50–120	50–120	50-120	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120
Thi	nner	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate	PM Acetate
Flas	sh Point, °F (°C)	~ 118 (48)	~ 118 (48)	~ 108 (42)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)
vo	C's, lbs/gal	5.3	3.9	5.7	4.8	4.8	4.9	4.7	4.8	4.9	4.9	5.0	5.0
She	elf Life @RT, months	6	6	6	6	6	6	6	6	6	6	6	6
Sto	rage Temperature, °F	40–90	40–90	40–90	40-90	40-90	40–90	40–90	40–90	40-90	40–90	40–90	40–90

Reference Notes

- LV Viscometer, LV3 Spindle @ 30 RPM.
- ² Actual coverage will vary depending on material losses during mixing and application.
- ³ Minimum Air Set is the minimum time recommended for drying the coating prior to heat curing.
- ¹ Viscosity is measured using a Brookfield ⁴ Adequate ventilation is required when curing these products as some outgassing will occur.
 - ⁵ Curing is recommended but not absolutely required if the system is raised slowly to a minimum of 500 °F within 24–48 hours of application and not exposed to high moisture or rain during this initial dwell period.

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. Smooth metal surfaces should be abrasive blasted to an SSPC-SP6 near white blast. Remove abrasive residue using air pressure; do not clean with organic solvents.

Aremco's Corr-Prep™ CPR2000 is recommended as an alternative when sandblasting is not possible. This is a specially formulated, water-based, zinc phosphate metal etching solution that is non-toxic, non-flammable, non-caustic, and non-corrosive. It etches metal to provide surface profile for superior coating adhesion to aluminum, galvanized metal, steel, and stainless steel. It also helps to improve long-term corrosion protection. Application is simple — just brush or spray liquid on the substrate, allow to sit for 20–30 minutes, the rinse off and dry substrate thoroughly prior to coating.

Application Notes: Mix thoroughly before use to redisperse fillers and pigments. Apply using a brush, roller or spray gun. When spraying, a maximum dry film thickness of 2-3 mils (0.002-0.003") can be achieved by applying two coats. Recommended fluid nozzle diameter is 40–50 mils, atomizing pressure of 40-50 psi, and distance from work of 8-10". Adequate ventilation is required when applying and curing the coating. Read Safety Data Sheet for further safety instructions.

Abbreviations

RT Room Temperature

HIGH TEMPERATURE POLYSILOXANE COATINGS

Technical Bulletin A6-S3A

Aremco's Corr-Paint™ CP40xx-S2 series silicone-ceramic coatings are single-part, room temperature cure systems that provide ultra-high temperature resistance up to 1800 °F (982 °C) along with exceptional resistance to outdoor weathering, UV, salt-spray corrosion, and flame impingement.

PRODUCT HIGHLIGHTS

- Ultra-High Temperature Resistance
- Room Temperature Curing
- Single Part, No Catalyst Required
- · Sprayable, Low Viscosity
- · Moisture & Salt Spray Resistant
- Flame Resistant
- UV Resistant
- High Dielectric Strength

Corr-Paint™ CP4000-S2

AVAILABLE COLORS*

CP4000-S2	CP4040-S2-HT
Black	White
CP4000-S2-HT	CP4045-S2-HT
Black	White
CP4010-S2	CP4080-S2-HT
Silver	Yellow
CP4020-S2-HT Gray	

^{*} All colors are matte finish. The colors represented here are approximate and the actual product color may vary.

COATINGS COLOR CONTINUOUS INTERMITTENT

CP4000-S2	Black	1000	1200
CP4000-S2-HT	Black	1400	1800
CP4010-S2	Silver	1100	1200
CP4020-S2-HT	Gray	1400	1800
CP4040-S2-HT	White	1400	1800
CP4045-S2-HT	White	1500	1600
CP4080-S2-HT	Yellow	1400	1800

TYPICAL APPLICATIONS

- Boilers
- Chimneys
- Ducting
- Heaters
- Heat Exchangers
- Exhaust Systems
- Engines

- Flight Decks
- Furnaces, Ovens, Kilns
- Process Vessels
- Reformers
- Scrubbers
- Stacks

42

CORR-PAINT™ HIGH TEMPERATURE POLYSILOXANE COATINGS PROPERTIES

Pro	duct Number	CP4000-S2	CP4000-S2-HT	CP4010-S2	CP4020-S2-HT	CP4040-S2-HT	CP4045-S2-HT	CP4080-S2-HT
Col	or (cured)	Black	Black	Silver	Navy Gray	Navy White	Boron Nitride	Navy Yellow
Ten	nperature Continuous, °F (°C)	1000 (538)	1400 (760)	1100 (593)	1400 (760)	1400 (760)	1500 (816)	1400 (760)
Ten	nperature Intermittent, °F (°C)	1200 (649)	1800 (982)	1200 (649)	1800 (982)	1800 (982)	1700 (927)	1800 (982)
No.	Components	1	1	1	1	1	1	1
Vis	cosity, cP1	250–500	150–500	200–500	200–400	250–500	500–1000	200–400
Spe	cific Gravity, g/cc	1.43	1.50	1.07	1.55	1.35	1.21	1.53
Soli	ds by Weight, %	83.0	72.9	67.3	85.5	85.2	66.0	85.3
Soli	ds by Volume, %	77.1	70.1	59.6	74.5	75.5	58.8	74.4
	t Film Thickness, Estimated, (microns)	1.3 (33.0)	1.4 (36.3)	1.7 (42.7)	1.4 (34.1)	1.3 (33.7)	1.7 (43.2)	1.34 (34.2)
	Film Thickness, Estimated, (microns)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)
	oretical Dry Film Coverage mil, ft²/gal (m²/liter)	1236 (30.3)	1124 (27.6)	955 (23.4)	1194 (29.3)	1211 (29.7)	944 (23.2)	1193 (29.3)
ם	Touch, hrs	1–2	1–2	1–2	1–2	1–2	1–2	1–2
Drying	Handling, hrs	2–4	2–4	2–4	2–4	2–4	2–4	2–4
	Recoat, (min/max), hrs	1 / 24	1–2	1 / 24	1 / 24	1 / 24	1 / 24	1 / 24
Curing	Minimum Air Set, hrs ³	1	1	1	1	1	1	1
c	Cure Schedule, °F/hrs ^{4,5}	RT / 24–48 or 450 / 1						
App	olication Temperature, °F	50–120	50–120	50–120	50–120	50–120	50–120	50–120
Thi	nner	T-Butyl Acetate						
Flas	sh Point, °F (°C)	~ 118 (48)	~ 113 (45)	~108 (42)	~ 118 (48)	~ 118 (48)	~ 118 (48)	~ 118 (48)
VO	C's, lbs/gal	2.0	2.5	2.9	1.8	1.7	3.3	1.8
She	If Life @RT, months	6	6	6	6	6	6	6
Sto	rage Temperature, °F	40–90	40–90	40–90	40–90	40–90	40–90	40–90

Reference Notes

- ¹ Viscosity is measured using a Brookfield LV Viscometer, LV3 Spindle @ 30 RPM.
- ² Actual coverage will vary depending on material losses during mixing and application.
- ³ This is the minimum time recommended to set the coating at room temperature before placing in operation or recoating.
- Adequate ventilation is required when applying and curing these products as some outgassing will occur.
- ⁵ This coating can be cured at room temperature (RT) or heat cured more rapidly at 450 °F in one hour.

Surface Preparation Notes

Metals should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. Smooth metal surfaces should be abrasive blasted to an SSPC-SP6 near white blast. Remove abrasive residue using air pressure.

Aremco's Corr-Prep™ CPR2000 is recommended as an alternative when sandblasting is not possible. This is a specially formulated, water-based, zinc phosphate metal etching solution that is non-toxic, non-flammable, non-caustic, and non-corrosive. It etches metal to provide surface profile for superior coating adhesion to aluminum, galvanized metal, steel, and stainless steel. It also helps to improve long-term corrosion protection. Application is simple — just brush or spray liquid on the substrate, allow to sit for 20–30 minutes, the rinse off and dry substrate thoroughly prior to coating.

Application Notes: Mix thoroughly before use to redisperse fillers and pigments. Apply using a brush, roller or spray gun. When spraying, a maximum dry film thickness of 2 mils (0.002") can be achieved by applying two coats. Recommended fluid nozzle diameter is 40–50 mils, atomizing pressure of 40–50 psi, and distance from work of 8–10". Adequate ventilation is required when applying and curing the coating. Read Safety Data Sheet for further safety instructions.

Abbreviations

RT Room Temperature

HIGH TEMPERATURE SILICONE EMULSION COATINGS

Technical Bulletin A6-S4

Corr-Paint™ CP4090

Corr-Paint™ CP4020 Corr-Paint™ CP4060

Corr-Paint™ CP4070

Aremco's Corr-Paint™ CP40xx series coatings are formulated using an advanced water-based silicone emulsion combined with inorganic fillers and pigments to offer VOC compliant coatings with continuous temperature resistance to 1100 °F (593 °C) and intermittent resistance to 1200 °F (649 °C).

These coatings are single-part, heat curable systems that adhere to a wide range of materials including metals, ceramics, glass, quartz, and refractories, and offer outstanding resistance to outdoor weathering, UV light, salt spray corrosion, oxidation, some chemicals, and thermal shock.

PRODUCT HIGHLIGHTS

- · Single-Part, No Mixing
- Low Viscosity
- Maximum Use Temperature, 1100 °F (593 °C)
- Intermittent Use Temperature, 1200 °F (649 °C)
- Bonds to Ceramics, Glass, Quartz, Metals
- Excellent Resistance to Moisture & Salt Spray
- Resists Thermal Shock
- · Resists Ultraviolet Light
- · Good Chemical Resistance
- Water-Based
- Low Volatile Organic Compounds (VOCs)

AVAILABLE COLORS*

CP4000 Black

CP4060 Red

CP4020 Gray

CP4070 Blue

CP4080 Yellow

CP4090 Brown

^{*} All colors are matte finish. The colors represented here are approximate and the actual product color may vary.

TYPICAL APPLICATIONS

- Bag Houses
- Boiler Casings
- Ceramic Cloth
- Ceramic Fiberboard
- Chimneys
- Cyclones
- Ducting
- Heaters
- Heat Exchangers
- Exhaust Systems

- Engines
- Furnaces, Ovens, Kilns
- Lighting Fixtures
- · Process Vessels
- Reformers
- Scrubbers
- Stacks
- Turbochargers

HIGH TEMPERATURE WATER-BASED SILICONE COATINGS PROPERTIES

Pro	luct Number	CP4000	CP4020	CP4040	CP4050	CP4055	CP4060	CP4070	CP4080	CP4090	CP4095
Col	or (cured)	Flat Black	Gray	White	Green	Pale Green	Red	Blue	Yellow	Brown	Orange
Ten	perature Continuous, °F (°C)	1100(593)	1100(593)	1100(593)	1100(593)	1100(593)	1100(593)	1100(593)	1100(593)	1100(593)	1100(593)
No.	Components	1	1	1	1	1	1	1	1	1	1
Viso	osity, cP ¹	400-800	400-800	400–900	500–750	500–1000	750–950	300–600	500–700	300–500	500–700
Spe	cific Gravity, g/cc	1.32	1.28	1.27	1.31	1.35	1.31	1.25	1.33	1.32	1.32
Soli	ds by Weight, %	51.5	44.2	44.2	48.5	55.0	46.5	44.8	47.0	44.5	44.5
Soli	ds by Volume, %	38.1	38.2	46.1	39.5	38.1	38.3	38.5	38.0	37.8	37.8
	Film Thickness, Estimate, (microns)	2.6 (66.5)	2.6 (66.4)	2.2 (55.1)	2.5 (64.3)	2.6 (66.6)	2.6 (66.3)	2.6 (66.3)	2.6 (66.8)	2.7 (67.2)	2.6 (64.9)
	Film Thickness, Estimated, (microns)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)
	oretical Dry Film Coverage mil, ft²/gal (m²/liter)	611 (14.9)	613 (15.1)	740 (18.2)	634 (15.6) 612 (15.0) 614 (15.1) 617 (15.2		617 (15.2)	610 (15.0)	606 (14.9)	628 (15.4)	
0	Touch, hrs	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2	1–2
Drying	Handling, hrs	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4	2–4
	Recoat, (min/max), hrs	1/24	1 / 24	1/24	1 / 24	1/24	1/24	1 / 24	1/24	1/24	1/24
- Bu	Minimum Air Set, hrs ³	1	1	1	1	1	1	1	1	1	1
Curing	Cure Schedule, °F/hrs ^{4,5}	450 / 1 or 480 / .75	450 / 1 or 480 / .75	450 / 1 or 480 / .75	450 / 1 or 480 / .75	450 / 1 or 480 / .75	450 / 1 or 480 / .75	450 / 1 or 480 / .75			
App	lication Temperature, °F	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120	50–120
Thir	ner	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water
Flas	h Point, °F (°C)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)
VO	c's, lbs/gal	1.04	0.99	0.98	0.98	0.67	0.98	1.01	0.95	0.98	0.98
She	f Life @RT, months	6	6	6	6	6	6	6	6	6	6
Sto	age Temperature, °F	55-85	55–85	55–85	55–85	55–85	55–85	55–85	55–85	55–85	55–85

Reference Notes

- ¹ Viscosity is measured using a Brookfield ⁴ Adequate ventilation is required LV Viscometer, LV3 Spindle @ 30 RPM.
- ² Actual coverage will vary depending on material losses during mixing and application.
- ³ Minimum Air Set is the minimum time recommended for drying the coating prior to heat curing.
- when curing these products as some outgassing will occur.
- ⁵ Curing is recommended but not absolutely required if the system is raised slowly to a minimum of 450 °F within 24–48 hours of application and not exposed to high moisture or rain during this period.

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. Smooth metal surfaces should be abrasive blasted to an SSPC-SP6 near white blast. Remove abrasive residue using air pressure: do not clean with organic solvents.

Aremco's Corr-Prep™ CPR2000 is recommended as an alternative when sandblasting is not possible. This is a specially formulated, water-based, zinc phosphate metal etching solution that is non-toxic, non-flammable, non-caustic, and non-corrosive. It etches metal to provide surface profile for superior coating adhesion to aluminum, galvanized metal, steel, and stainless steel. It also helps to improve long-term corrosion protection. Application is simple — just brush or spray liquid on the substrate, allow to sit for 20–30 minutes, the rinse off and dry substrate thoroughly prior to coating.

Application Notes: Mix thoroughly before use to redisperse fillers and pigments. Apply using a brush, roller or spray gun. When spraying, a maximum dry film thickness of 2 mils (0.002") can be achieved by applying two coats. Recommended fluid nozzle diameter is 40–50 mils, atomizing pressure of 40–50 psi, and distance from work of 8–10". Adequate ventilation is required when applying and curing the coating. Read Safety Data Sheet for further safety instructions.

Abbreviations

RT Room Temperature

ULTRA HIGH TEMPERATURE CERAMIC COATINGS

Technical Bulletin A6-S5

Corr-Paint™ CP3015-BL

Aremco's Corr-Paint™ CP3015-xx series coatings are silicate-bonded, ceramic and/or metal-filled, aqueous-based systems that provide excellent resistance to thermal shock, oxidation, and chemical corrosion, with good color stability for

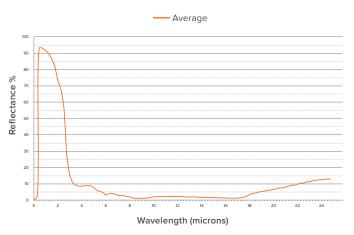
applications as high as 1500 °F (816 °C).

These coatings are single-part, fast curing systems that adhere well to carbon and stainless steels, ceramics and refractories.

Mainly recommended for interior system protection, several standard colors are provided and custom colors are available upon request.

TYPICAL APPLICATIONS

- Bag Houses
- Boiler Casings
- Ceramic Cloth
- · Ceramic Fiberboard
- Chimneys & Stacks
- Heaters
- Heat Exchangers
- Exhaust Systems
- Engines
- Furnaces, Ovens, Kilns
- Rotary Calciners
- · Solar Collectors


PRODUCT HIGHLIGHTS

Corr-Paint™ CP3015-AL

CP3015-AL Aluminum-Ceramic, 1200 °F (649 °C) CP3015-BL Black Pigmented, 1500 °F (816 °C) CP3015-GR Gray Pigmented, 1400 °F (760 °C) CP3015-SS Stainless Steel, 1400 °F (760 °C) CP3015-WH Off-White, Zirconia Filled, 1500 °F (816 °C) CP3015-ZNO Zinc Oxide, White Reflective, 1200 °F (649)

Zinc Oxide, White Reflective, 1200 °F (649 °C), Intermittent 1500 °F (816 °C). Reflectivity is \geq 90% at 0.4 – 1.2 μ ; Peak Reflectivity of 93.9% at 0.56 μ .

CP3015-ZNO Spectral Reflectance

46

ULTRA HIGH TEMPERATURE CERAMIC COATINGS PROPERTIES

Pro	duct Number	CP3015-AL	CP3015-BL	CP3015-GR	CP3015-SS	CP3015-WH	CP3015-ZNO
Col	or	Aluminum	Black	Gray	Stainless Steel	White	Zinc Oxide White
Ten	nperature Continuous,°F (°C)	1200 (649)	1500 (816)	1400 (760)	1400 (760)	1500 (816)	1500 (816)
No.	Components	1	1	1	1	1	1
Vis	cosity, cP ¹	250–900	600–900	600–900	200–500	600–900	1000–1500
Spe	ecific Gravity, g/cc	1.32	1.54	1.38	1.47	1.37	1.74
Sol	ds by Weight, %	36.8	50.0	40.0	42.3	40.0	52.8
Sol	ds by Volume, %	19.3	46.3	19.6	41.4	20.6	28.8
WF	T, mils (microns) ²	5.20 (131.9)	2.16 (54.9)	5.09 (129.4)	2.42 (61.4)	4.87 (123.6)	3.47 (88.2)
DF	Γ, mils (microns) ³	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)	1.0 (25.4)
Theoretical Dry Film Coverage ⁴ @ 1 mil, ft²/gal (m²/liter)		309 (7.6)	742 (18.2)	315 (7.7)	664 (16.3)	330 (8.1)	462 (11.3)
Prin	ner ⁵	NR	NR	NR	NR	NR	NR
g	Touch, hrs	1–2	1–2	1–2	1–2	1–2	1–2
Drying	Handling, hrs	2–4	2–4	2–4	2–4	2–4	2–4
	Recoat, (min/max), hrs	1/24	1/24	1/24	1/24	1 / 24	1/24
Curing	Min Air Set, hrs ⁶	1	1	1	1	1	1
Cul	Cure, °F/hrs ⁷	200/2 + 500/1	200/2 + 500/1	200/2 + 500/1	200/2 + 500/1	200/2 + 500/1	200/2 + 500/1
Apı	olication Temperature, °F	50-90	50–90	50–90	50–90	50–90	50-90
Thi	nner	CP3015-AL-T	CP3015-BL-T	CP3015-GR-T	CP3015-SS-T	CP3015-WH-T	CP3015-ZNO-T
Pot	Life, hrs at room temp.	NA	NA	NA	NA	NA	NA
Fla	sh Point, °F (°C)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)	> 212 (100)
vo	C's, lbs/gal	0	0	0	0	0	0
She	If Life @RT, months	6	6	6	6	6	6
Sto	rage Temperature, °F	40-85	40–85	40–85	40–85	40–85	40–85

Reference Notes

- Viscosity is measured using a Brookfield LV Viscometer, LV3 Spindle @ 30 RPM.
- ² Estimated Wet Film Thickness (WFT).
- ³ Recommended Dry Film Thickness (DFT).
- ⁴ Actual coverage will vary depending on material losses during application.
- ⁵ Primer is only recommended for exterior applications in which salt fog or moisture are present.
- ⁶ Where a value is provided for "Min Air Set", it is recommended to set the coating at room temperature for, at minimum, the specified time prior to curing.
- ⁷ Curing is recommended but not absolutely required if the system is raised slowly to a minimum of 500 °F within 24–48 hours of application and not exposed to high moisture or rain during this initial dwell period.

Surface Preparation Notes

All surfaces should be free of oil, grease, dirt, corrosives, oxides, paints or other foreign matter. No further preparation is required when coating ceramics, refractories or graphites. Smooth metal surfaces should be abrasive blasted to an SSPC-SP10 near white blast. Remove abrasive residue using air pressure; do not clean with organic solvents.

Aremco's Corr-Prep™ CPR2000 is recommended as an alternative when sandblasting is not possible. This is a specially formulated, waterbased, zinc phosphate metal etching solution that is non-toxic, non-flammable, non-caustic, and non-corrosive. It etches metal to provide surface profile for superior coating adhesion to aluminum, galvanized metal, steel, and stainless steel. It also helps to improve long-term corrosion protection. Application is simple—just brush or spray liquid on the substrate, allow to sit for 20–30 minutes, then rinse off and dry substrate thoroughly prior to coating.

 $\label{eq:Application Notes:} \begin{tabular}{l} Application Notes: Mix thoroughly before use to redisperse fillers and pigments. Apply using a brush, roller or spray gun. When spraying, a maximum dry film thickness of 2 mils (0.002") can be achieved by applying two coats. Recommended fluid nozzle diameter is 40–50 mils, atomizing pressure of 40–50 psi, and distance from work of 8–10". Adequate ventilation is required when applying and curing the coating. Read Safety Data Sheet for further safety instructions.$

Abbreviations

NA Not Applicable

NR Not Required or Recommended

DFT Dry Film Thickness WFT Wet Film Thickness RT Room Temperature

HIGH PERFORMANCE EPOXIES

Technical Bulletin A7

Aremco offers an impressive selection of high performance epoxies for specialty bonding and potting applications to 600 °F. These products can be applied to a myriad of substrates, offering exceptional chemical, electrical and mechanical properties.

PRODUCT HIGHLIGHTS

Ultra High Temperature

- 526N Clear-Amber, 1:1 System for Tough Bonding Applications.
- 570 Single-Part Contact Adhesive, Excellent Flexibility.
- 805 Aluminum-Filled, Low Shrinkage, High Thermal Conductivity, For Bonding & Molding.
- 2330 Single-Part, Heat Curable, Silicone Elastomer Adhesive.
- 2335 Ceramic-Filled, Low Expansion, High Lap-Shear Strength &
 - Chemical Resistance, Low Outgassing.

High Temperature, Special Purpose

- Aluminum-Filled, 1:1, High Bond Strength, Excellent Thermal 568 Conductivity.
- 631 Clear-Amber, 1:1, High Bond Strength & Corrosion Resistance.
- 10 Minute Set, Non-Sagging, 1:1, Excellent Electrical & 807 Mechanical Properties.
- 820 Clear, 1:1, 45-Minute Cure System with Good Flexibility.
- 2150 Fast-Setting, Ceramic-Filled, High Vibration Resistance &

Bond Strength.

High Temperature Potting Compounds

- 2315 High Temperature Resistance, Thermally Conductive, Low Viscosity.
- 2315X Similar to 2315 Providing Improved Crack Resistance & Bond Strength.
- 2318 High Temperature, Low Viscosity, Room Temperature Cure.
- 2340 High Temperature, Low Viscosity, Low Expansion, High Glass Transition Temperature & Chemical Resistance.

High Temperature, Maintenance & Repair

- Stainless-Steel Filled, 1:1, High Bond Strength & Corrosion 657 Resistance.
- 2200 Glass Fiber & Kevlar-Reinforced, Epoxy-Novolac, High Strength & Excellent Abrasion & Corrosion Resistance.
- Aluminum & Ceramic-Filled, Vibration & Impact Resistant; 2210 For Repairing Aluminum Mold & Wear Surfaces.
- 2220 Ceramic-Filled, High Chemical Resistance, Machinable; For Repairing Deeply Corroded Parts.

Ultra High Bond Strength

- Unfilled, Low Viscosity, Rubberized Epoxy, Exceptional Bond Strength & Chemical Resistance.
- 2310 Ceramic-Filled, 1:1, High Lap Shear & Peel Strength, Resistant to Extreme Shock, Vibration & Flexing; Ideal for Autoclave & Cryogenics.
- 2320 Toughened, Unfilled, Fast-Setting, BPA Free, 2:1, High Peel & Shear Strength.

Aremco-Bond[™] 570 bonds ceramic to copper nozzle.


Aremco-Bond™ 568 bonds copper coil.

Aremco-Bond™ 526N bonds alumina to alumina ceramic

Aremco-Bond[™] 631 bonds sapphire tube to stainless steel.

Aremco-Bond™ 657-FST

Aremco-Bond™ 2150 repairs defects in cast iron. bonds ceramic wear tile.

HIGH PERFORMANCE EPOXIES PROPERTY CHART

Category		Ultra	a High Tempera	ture			High Temp	perature, Speci	al Purpose		High	Temperature I	Potting Compo	unds	High	Temperature, N	Maintenance &	Repair	Ultra	High Bond Str	ength
Product Number	526N ^{5, 6}	570	805	2330	2335	568	631 ^{5, 6}	807	820	2150	2315 ⁶	2315X	2318	2340	657	2200	2210	2220	2300	2310	2320
Mix Ratio by Weight, resin:hardener ¹	1:1	NA	100:12	NA	100:5.5	1:1	1:1	1:1	1:1	100:13	100:25	100:25	100:12	100:10	1:1	1:1	100:11	100:28	100:10	1:1	2:1
Specific Gravity, g/cc @ 25 °C	1.23	0.95	1.66	1.43	1.80	0.85	1.12	1.39	1.15	1.50	1.95	1.95	1.58	1.76	1.65	1.60	1.80	1.70	1.10	1.35	1.10
Mixed Viscosity, cP @ 25 °C	8,500	35,000	11,000	38,000	Paste	Paste	25,000	75,000	12,000	91,000	3,000	4,000	16,000	39,000	Paste	165,000	40,000	120,000	5,000	45,000	35,000
Pot Life, 100 gm mass @ 25 °C, hrs	2.50	NA	≤1.0	NA	1.50	4.00	4.00	0.25	0.25	>8	2.00	>8	0.70	> 4	4.00	0.70	1.00	1.00	0.75	0.75	1.00
Recommended Cure, hr/°F	2/200 + 2/325	.3/180 + .5/350	24/100 + 2/200	1/200	2/200 + 2/350	2/200	2/200	1/RT	.75/RT	24/RT	2/160 + 2/300	2/160 + 2/300	4/RT + 2/200	2/175 + 2/300	2/200	24-48/RT	24-48/RT	12-24/RT	2/150	2/150	24-48/RT
Alternate Cure, hr/°F	3-4/300	24/RT + .5/350	24/RT + 2/200	.75 / 300 or .50 / 400 F	8/300	24-48/RT	24-48/RT	_	_	1/RT + 4/175	6/250	4/220	24-48/RT	6/250	24–48/RT	4/175	2/200	2/200	48/RT	48/RT	2/200
Temperature Resistance, °F	-76 / +572	-76 / +600	-103 / +572	-76 / +572	-67 / +572	-85 / +400	-85 / +400	-67 / +266	-58 / +392	-67 / +400	-67 / +365	-67 / +365	-67 / +248	-40 / +430	-85 / +400	-67 / +400	-67 / +400	-67 / +400	-67 / +350	-67 / +325	-67 / +250
Temperature Resistance, °C	-60 / +300	-60 / +316	-75 / +300	-60 / +300	-55 / +300	-65 / +204	-65 / +204	-55 / +130	-50 / +200	-55 / +204	-55 / +185	-55 / +185	-55 / +120	-40 / +220	-65 / +204	-55 / +204	-55 / +204	-55 / +204	-55 / +175	-55 / +165	-55 / +120
CTE , in/in/°F × 10 ⁻⁶ (°C)	18 (33)	48 (86)	25 (45)	94 (170)	14 (25)	33 (60)	27 (49)	32 (59)	16 (29)	18 (32)	19 (34)	19 (34)	39 (70)	9 (16)	30 (54)	19 (34)	15 (28)	18 (32)	37 (66)	43 (77)	33 (60)
Thermal Conductivity, Btu-in/hr-ft²-°F	_	_	12.5	_	_	9.0	-	-	_	_	8.4	8.4	4.4	_	_	_	11.0	_	—	_	_
Tensile Shear Strength, psi ²	2,800	3,750	1,800	425	2,000	2,500	3,000	1,135	1,200	2,350	600	800	1,135	1,100	2,500	2,300	2,600	2,700	4,560	4,770	4,800
Flexural Strength, psi ³	18,000	ND	15,500	_	13,600	11,400	10,200	_	8,000	11,800	12,300	12,300	14,100	13,800	12,000	13,400	14,100	16,000	13,500	12,000	_
Volume Resistivity, ohms-cm @ RT	4.0 × 10 ¹⁴	1.0 × 10 ¹³	1.0 × 10 ⁵	2.0 × 10 ¹⁵	2.0 × 10 ¹⁵	1.0 × 10 ⁵	1.2 × 10 ¹⁴	2.0 × 10 ¹⁴	2.0 × 10 ¹⁴	1.0 × 10 ¹⁵	1.0 × 10 ¹⁶	1.0 × 10 ¹⁶	3.0 × 10 ¹⁵	3.8 × 10 ¹⁵	ND	1.0 × 10 ¹⁵	1.0 × 10 ¹³	2.0 × 10 ¹⁵	1.0 × 10 ¹⁵	3.0 × 10 ¹³	2.0 × 10 ¹⁴
Dielectric Strength, volts/mil	450	300	50	550	450	80	440	380	860	460	480	480	460	460	ND	460	420	480	380	410	1,100
Dielectric Constant, 1.0 kHz	3.01	ND	ND	3.3	4.8	ND	3.12	4.4	6	4.2	4.7	4.7	4.8	4.3	ND	4.7	6.5	6.8	3.5	4.3	_
Dissipation Factor	0.01	ND	ND	0.02	0.0007	ND	0.01	0.03	0.04	0.04	0.01	0.01	0.014	0.004	ND	0.01	0.09	0.01	0.008	0.4	_
Chemical Resistance	Good	Excellent	Good	Good	Excellent	Excellent	Good	Excellent	Excellent	Good	Excellent	Excellent	Excellent	Excellent	Excellent	Good	Good	Very Good	Very Good	Good	Good
Color	Amber	Black	Gray	Red	Black	Gray	Amber	Gray	Clear	Light Gray	Black	Black	Black	Black	Gray	Rust Brown	Gray	Black	Milky Clear	Black	Off-White
Hardness, Shore D	89	ND	87	43 (Shore A)	90	75	75	73	65	84	92	92	89	90	75	88	89	88	85	78	78
Cure Shrinkage, in/in ⁴	0.01	ND	0.003	0.003	0.0031	0.002	0.002	0.009	0.008	0.004	0.003	0.003	0.003	0.0034	0.002	0.009	0.005	0.003	0.003	0.001	0.001

Reference Notes

Epoxies mixed in a 1:1 ratio are available in 50ml dual barrel cartridges. Add "-C" to part number (eg. 568-C). Request 9700 mechanical dispenser, 9800 pneumatic dispenser or 9850 plunger. Also request 9905 3.5" or 9910 6" static mixing nozzles.

² Tested according to ASTM D1002-94. This is a standard test method for determining the shear strength of single lap-joint metal coupons in tension loading.

³ Tested according to ASTM D790, "Flexural Properties of Unreinforced and Reinforced and Electrically Insulating Materials, Method-L, Three Point Loading System".

⁴ Linear shrinkage is measured using a ³/₄ lb casting mass.

⁵ Also available filled with aluminum nitride or aluminun oxide, inorganic black pigment or both. Part numbers are 526N-ALN, 526N-ALOX, 526N-ALOX-BL, 526N-BL, 631-ALN, 631-ALOX, 631-BL, and 631-ALOX-BL.

⁶ Meets NASA outgassing requirements.

Application Not

Surface Preparation: All surfaces must be free of oil, grease, dirt, corrosives, oxides, paint or other foreign matter. Sand blast or abrade non-porous surfaces, or etch using Aremco's Corr-Prep[®] CPR2000.

Mixing: Two component products should be mixed thoroughly prior to dispensing. For high viscosity systems each component can be preheated separately at 100–125 °F to facilitate mixing and dispensing. Use Aremco's 9700 or 9800 50ml dispensing systems for precise mixing of two component products.

Application: In most cases, the adhesive should be applied to both surfaces maintain a glue line of less than 10 mils. After assembling the parts, pressure should be applied to the assembly to prevent warpage and reduce air entrapment. Refer to curing guidelines in the above property chart.

Abbreviations

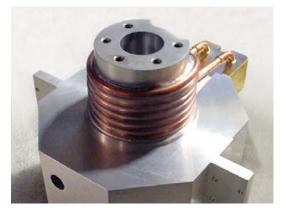
NA Not Applicable
ND Not Determined
RT Room Temperature

ELECTRICALLY & THERMALLY CONDUCTIVE ADHESIVES & COATINGS

Technical Bulletin A8-S1

Aremco offers a broad range of electrically and thermally conductive adhesives & coatings that provide solutions to a variety of electrical, electronics and thermal design problems throughout industry.

PRODUCT HIGHLIGHTS


B. IN alex			Condu	ctivity	Max Temp
Part Number	Adhesive/Coating	Filler	Electrical	Thermal	°F (°C)
525-N	Adhesive	Silver	~	✓	340 (170)
556	Adhesive	Silver	~	√	340 (170)
556-LV	Adhesive	Silver	✓	✓	340 (170)
556-HT-HC	Adhesive	Silver	✓	✓	390 (200)
556-HT-UHC	Adhesive	Silver	✓	✓	390 (200)
556-HT-SP	Adhesive	Silver	✓	✓	445 (230)
568	Adhesive	Aluminum		✓	400 (204)
597-A	Adhesive	Silver	~	✓	1700 (927)
597-C	Coating	Silver	~	✓	1700 (927)
598-A	Adhesive	Nickel	✓	✓	1000 (538)
598-C	Coating	Nickel	✓	✓	1000 (538)
614	Adhesive	Nickel	✓	✓	360 (180)
616	Adhesive	Silver	✓	✓	360 (180)
805	Adhesive	Aluminum		✓	572 (300)
860	Adhesive	Aluminum Nitride		✓	400 (204)

Pyro-Duct[™] 597-C metallizes ceramic tubes.

Aremco-Bond™ 556-HT-SP used to bond thermal sensor.

Aremco-Bond $^{\text{\tiny{M}}}$ 568 bonds copper heat exchange tube to aluminum.

ELECTRICALLY & THERMALLY CONDUCTIVE ADHESIVES & COATINGS

Properties	ADHESIVES							COAT	COATINGS						
Product Number	525-N	556	556-LV	556-HT-UHC	556-HT-HC	556-HT-SP	597-A	598-A	568³	614	616	805	860³	597-C	598-C
Resin type			Ep	оху			Cer	amic			Ероху			Silicone	Ceramic
Filler	Silver Flake	Silver Flake	Silver Flake	Silver Flake	Silver Flake	Silver Flake	Silver Flake	Nickel Flake	Aluminum	Nickel Flake	Silver- Coated Glass	Aluminum	Aluminum Nitride	Silver Flake	Nickel Flake
Particle Size, microns	< 28	< 20	< 20	< 20	< 20	< 44	< 20	< 20	< 20	< 20	< 130	< 50	< 10	< 20	< 20
No. Components	1	2	2	2	2	2	1	1	2	2	2	2	2	1	1
Mix Ratio, by Weight, resin:hardener	NA	1:1	100:4	100:2	100:2	1:1	NA	N/A	1:1	1:1	1:1	100:12	1:1	NA	NA
Mixed Specific Gravity, g/cc @ 25 °C	1.85	3.2	2.9	3.7	3.1	3.1	2.3	2.8	0.85	1.8	1.53	1.66	1.90	2	1.5
Mixed Viscosity, cP @ 25 °C	Paste	35,000- 40,000	4,000– 6,000	40,000- 50,000	40,000- 45,000	35,000– 45,000	Paste	20,000- 25,000	Paste	100,000- 110,000	50,000- 60,000	11,000	40,000	400-800	400–600
Pot Life, 25 gms @ 25 °C	NA	1 Hr	1 Hr	> 48 Hrs	48 Hrs	> 48 Hrs	NA	N/A	4.0 Hr	0.75 Hr	0.75 Hr	< 1.0 Hr	4.0 Hr	NA	NA
Recommend Cure, hr/°F	2/300	2/200	2/200	2/175	2/200	1/350	2/RT + 2/200	2/RT + 2/200	2/200	2/100	2/100	24/100 + 2/200	2/200	1/RT + .5/480	2/RT + 2/200
Alternate Cure, hr/°F	6/250	24/RT	24/RT	0.5/250 or 0.25/300	1/250	2/300	_	_	24-48/RT	1/200 or 8/RT	1/200 or 8/RT	24/RT + 2/200	24-48/RT	_	_
Service Temperature, °F (°C)¹ Continuous Intermittent	340 (170) 375 (190)	340 (170) 375 (190)	340 (170) 375 (190)	390 (200) 480 (250)	390 (200) 480 (250)	445 (230) 570 (300)	1700 (927) —	1000 (538)	400 (204) —	360 (180) 400 (205)	360 (180) 400 (205)	572 (300) —	400 (204) —	1700 (927) —	1000 (538) —
Volume Resistivity, ohm-cm	0.006	0.0009	0.0008	< 0.0003	< 0.0001	< 0.0004	0.0002	0.005	1.0 × 10 ⁵	0.025	0.002- 0.004	1.0 × 10 ⁵	1.0 × 10 ¹⁵	0.0002	0.005
Tensile Shear Strength, psi ²	2,500	1,700	1,100	> 1,000	1,700	1,400	_	_	2,500	2,500	1,000	1,800	1,375	_	_
Thermal Conductivity, W/m-K	2.1	2.2	2.2	12.4	2.2	3.5	9.1	2.6	1.3	0.5	0.4	1.8	1.2	9.1	2.6
Hardness, Shore D	76	72	84	90	90	88	_	_	75	78	78	87	75	_	_
Color	Silver	Silver	Silver	Silver	Silver	Silver	Silver	Dark Gray	Gray	Dark Gray	Tan	Gray	Gray	Silver	Dark Gray
Shelf Life, months	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6

Reference Notes

Application Notes

Surface Preparation: All surfaces must be free of oil, grease, dirt, corrosives, oxides, paint or other foreign matter. Sand blast or abrade non-porous surfaces, or etch using Aremco's Corr-Prep™ CPR2000.

Mixing: Two component products should be mixed thoroughly prior to dispensing. For high viscosity systems each component can be preheated separately at 100–125 °F to facility mixing and dispensing. Aremco-Bond™ 568 is available in 50ml cartridges. Order 568-C 50ml Cartridge, 9910 6″ Mixing Nozzle and 9850 Plunger or 9700 Mechanical Dispense Gun.

Application: Apply adhesive to both surfaces maintaining a glue line of less than 10 mils. Assemble parts and apply pressure to prevent warpage and reduce air entrapment. Refer to curing guidelines in above property chart.

Abbreviations

NA Not Applicable RT Room Temperature

¹ The low end of the service temperature range for all products is approximately –67 °F (–55 °C).

² Tested according to ASTM D1002-94 at 25 °C, a method for determining the shear strength of a single lap-joint of metal substrates in tensile loading.

³ Available as a faster-setting. Add "-FSLV" (eg. 568-FSLV).

ELECTRICALLY & THERMALLY CONDUCTIVE GREASES

Technical Bulletin A8-S2

Aremco's Heat-Away™ greases are ceramic and metal-filled systems that offer exceptional electrical and thermal properties up to 680 °F (360 °C). These materials are used in high power electronics, heat pipes, high vacuum systems, and other heat management applications.

PRODUCT HIGHLIGHTS

B. IN alex		Condu	ctivity	Vacuum	Temp. Range	
Part Number	Filler	Electrical Thermal		Compatible	°F (°C)	
637	Alumina		√		550 (288)	
638	Aluminum Nitride		✓		550 (288)	
639	Aluminum		✓		550 (288)	
640	Copper		√		550 (288)	
641	Silver	√	✓		550 (288)	
641-EV	Silver	✓	√	√	550 (288)	
641-HT-EV	Silver	✓	√	√	680 (360)	

Heat-Away™ 639 coats process heater to improve thermal contact

HEAT-AWAY™ THERMALLY CONDUCTIVE GREASES

Product Number	637	638	639 ⁽²⁾	640 ⁽²⁾	641	641-EV (1)	641-HT-EV (1)
Filler	Alumina	Aluminum Nitride	Aluminum	Copper	Silver	Silver	Silver
Temperature Resistance, °F	-60/+550	-60/+550	-60/+550	-60/+550	-60/+550	-60/+550	-23/+680
Temperature Resistance, °C	-51 / +288	-51 / +288	-51 / +288	-51 / +288	-51 / +288	-51 / +288	-5 / +360
Thermal Conductivity, W/m-K	0.475	2.23	3.04	4.68	5.58	5.58	5.58
Dielectric Strength, volts/mil	300	300	40	4	4	_	_
Volume Resistivity, ohm-cm (3)	10 ¹⁴	10 ¹⁴	10 ⁴	10 ³	< 0.0002	< 0.0002	< 0.0006
Chemical Resistance	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent
Water Absorption	Nil	Nil	Nil	Nil	Nil	Nil	Nil
Solids, %	100	100	100	100	100	100	100
Specific Gravity, g/cc	2.42	2.27	1.35	1.33	3.90	4.30	4.20
Color	White	Gray	Aluminum	Copper	Silver	Silver	Silver

Reference Notes

(1) Heat-Away 641-EV and 641-HT-EV are electrically and thermally conductive greases rated for high vacuum systems.

Tomporature	C (0E)	Vapor Pressure (Torr)					
Temperature, °	C(1F)	641-EV	641-HT-EV				
20 (68)		3 × 10 ⁻¹⁴	≤4 × 10 ⁻¹⁵				
50 (122)		2×10^{-12}	Not Measured				
100 (212)		1 × 10 ⁻⁹	≤2 × 10 ⁻¹⁰				
200 (392)		2 × 10 ⁻⁶	≤3 × 10 ⁻⁷				

⁽²⁾ Caution: Exposure to voltages in excess of rated maximum may cause a permanent electrical leak path.

Refer to Price List for complete order information.

Aremco Products makes no warranty express or implied concerning the use of this product.

The user assumes all risk of use or handling whether or not in accordance with directions or suggestions, or used singly or in combination with other products.

 $^{^{(3)}}$ Volume resistivity is measured < 0.002" thick after exposure to 500 °F.

MOUNTING ADHESIVES

Technical Bulletin A9

Aremco's Crystalbond™ mounting adhesives are ideal for temporarily mounting a range of materials that require dicing, polishing, and other machining processes. These mounting adhesives exhibit good bond strength and adhere readily to ceramics, glass, metals, and quartz. When processing is complete, these adhesives are removed by re-heating and cleaning with a suitable solvent.

PRODUCT HIGHLIGHTS

Crystalbond™ 509

Mid-range melting point of 165 °F (74 °C). Provides excellent adhesion and minimizes clogging of diamond tools when compared to many waxes. Transparent in thin cross-sections. Soluble in acetone or Aremco's proprietary **Crystalbond™ 509-S1 Stripper**, a low odor, non-flammable, biodegradable, water-rinsible solvent. Available in three standard colors and rectangular bars:

Crystalbond [™] 509-1B	Light Amber	Rectangular Bar, 5/8" × 1" × 7"
Crystalbond™ 509-2B	Dark Amber	Rectangular Bar, 5/8" × 1" × 7"
Crvstalbond™ 509-3B	Clear Turquoise	Rectangular Bar. 5/8" × 1" × 7"

Crystalbond[™] 555

Low melting point of 120 °F (49 °C).

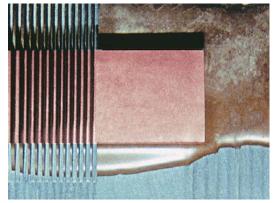
Crystalbond™ 555-HMP

Mid-range melting point of 150 °F (66 °C).

Use 555 and 555-HMP for low stress machining processes, dry plasma etching or silicon wafers, de-paneling copper plated Teflon boards, and dicing ceramic green tape. Transparent in thin cross-sections and soluble in hot water. Available in rectangular bars, 5% × 1" × 7".

Crystalbond™ 590

High melting point of 300 °F (150 °C). High strength, flexible adhesive, ideal for dicing high aspect ratios. Soluble in isopropyl alcohol or Aremco's proprietary **Crystalbond™ 590-S Stripper**, a water-dispersible, environmentally safe powder concentrate. Available in two standard forms:


Crystalbond™ 590-STK Rectangular Stick, 5%" × 1" × 7"
Crystalbond™ 590-PDR Granular Powder

Crystalbond™ 509-3B

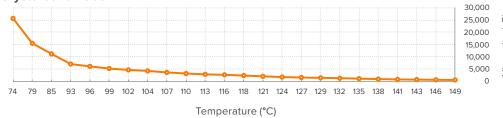
Crystalbond™ 555-HMP

Crystalbond[™] 590 bonds Boron Carbide ceramic diced into 25–50 mil sections.

TYPICAL APPLICATIONS

- Machining advanced ceramics
- Lapping and polishing optical components
- Dicing ceramic substrates
- · Dicing semiconductor wafers
- Dicing ferrites, glasses and piezoelectrics
- Dicing metal and optical single crystals
- Mounting cross-sections for SEM
- · Backfilling components for support
- · Dry plasma etching

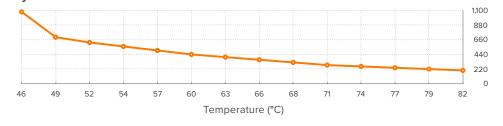
CRYSTALBOND™ PRODUCT SPECIFICATIONS


Part Number	509	555	555-HMP	590	
Flow Point, °F (°C)	165 (74)	120 (49)	150 (66)	300 (150)	
Tensile Strength, psi	1,160 ¹	220	335	950²	
Solvent	509-S1 or Acetone	Hot Water	Hot Water	590-S or Isopropanol	
Available Colors	509-1 Light Amber 509-2 Dark Amber 509-3 Clear-Turquoise	White	White	Brown	
Available Forms Stick, 5%" × 1" × 7"		Stick, ½" × 1" × 7"	Stick, ½" × 1" × 7"	590-PDR Powder 590-STK 5%" × 1" × 7"	
Weight	0.20 Lbs/Stick	0.15 Lbs/Stick	0.15 Lbs/Stick	0.50 Lbs/Stick	

Reference Notes

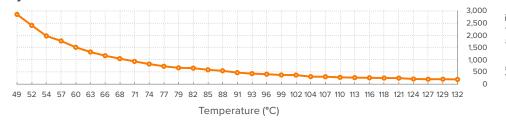
- ¹ Crystalbond™ 509 tensile strength measured using a solution of 60 parts 509 and 40 parts Acetone by weight.
 ² Crystalbond™ 590 tensile
- 2 Crystalbond" 590 tensile strength measured using a solution of 36 parts 590 and 64 parts Isopropanol by weight.

CRYSTALBOND™ — VISCOSITY VS. TEMPERATURE


Crystalbond™ 509

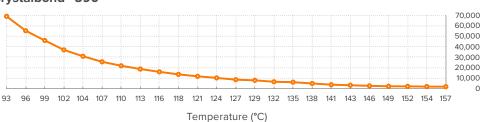
#2 Spindle

@12 RPM used for viscosity < 2,500 cP, @6 RPM for viscosity 2,500–5,000 cP, @3 RPM for viscosity 5,000–7,500 cP, @1.5 RPM for viscosity 7,500–15,500 cP, @1 RPM for viscosity 15,500–26,000 cP.


Crystalbond™ 555

#3 Spindle

@6 RPM used for viscosity < 1,100 cP.


Crystalbond[™] 555-HMP

#3 Spindle

@30 RPM used for viscosity < 3,000 cP.

Crystalbond™ 590

#4 Spindle

@6 RPM used for viscosity < 55,500 cP, @3 RPM for viscosity 55,500–70,000 cP.

Crystalbond™ 590

APPLICATION PROCEDURES

Crystalbond™ Adhesives | General Procedure

- Using a hot plate or oven, heat a ceramic or glass mounting block to the flow temperature of the selected adhesive. Make sure to work in a well-ventilated area, and do not overshoot the flow temperature, otherwise, the adhesive will begin to decompose and polymerize, causing a reduction in strength.
- 2. Apply a uniform layer of adhesive to the heated mounting plate and place the substrate over the adhesive. Using a weight, apply even pressure to the substrate to remove air bubbles and to ensure that the substrate is parallel to the plate. Apply a fillet of the adhesive around the perimeter of the substrate to increase the holding strength.
- Remove the mounting plate from the heat source and allow it to cool slowly to room temperature until the adhesive is hardened. Cool for 20–30 minutes before processing.
- 4. Process the substrate as required, then remove the parts by re-heating the mounting block to the flow temperature. Use a tool to remove the substrate from the mounting plate and follow Cleaning section.

Crystalbond™ 509 | Liquid Procedure

- This adhesive can be applied in a thin, uniform film by dissolving and spin-coating, spraying or brushing onto the substrate. Simply crush the adhesive stick into a powder and mix with acetone in a ratio of 80 parts acetone to 20 parts 509 by weight.
- 2. Spin-coat, spray or brush the solution onto the parts and allow solvent to evaporate for a minimum of 5 minutes. A heat gun can be used to accelerate the evaporation rate.
- 3. Press parts together and heat to ~165 °F for 10–15 minutes, then cool to room temperature before processing.

Crystalbond™ 590-PDR | Liquid Procedure

- Blend approximately 65 parts isopropyl alcohol and 35 parts 590-PDR powder by weight. Stir contents regularly to prevent settling of solids.
- Apply a thin film of the mixture to both substrates to be bonded and evaporate solvents naturally or using an oven at ~250 °F for ~10 minutes. Remove from oven and allow to cool.
- 3. Clamp parts together and place in oven at 300 °F for ~30 minutes. Remove parts and allow to cool to room temperature before processing.

OPTIONAL CLEANING AGENTS

Crystalbond™ 509-S1 Stripper

This is a high performance, environmentally safe, non-ionic cleaning agent developed specifically for removing Crystalbond 509 and other polymer coatings and inorganic particulates.

Features

- · Low Evaporation Rate
- · Rinses with Water
- · Non-Flammable
- · Non-Reactive with Metals
- Biodegradable

Usage

509-S1 works best with an ultrasonic system at $120-140\,^{\circ}$ F (50-60 °C). The evaporation rate is much slower than acetone so a good lifecycle will be achieved in comparison. Replace 20% of the stripper with new material as adhesive residue begins to concentrate. Refer to process diagram for a suggested cleaning procedure.

Rinsing

A stepwise, warm rinsing process is recommended after removing the adhesive. Rinse in a dilute, non-ionic surfactant or liquid detergent system, followed by a final rinse in deionized water to eliminate water spots due to hard salts and contaminant re-deposition.

Compatibility

This cleaner is non-reactive with metals; however, it will react with many types of polymers and plastics such as elastomers and rubbers. Contact Aremco with any questions about compatibility.

Handling and Storage

This cleaner is readily biodegradable and non-toxic to marine life. The use of gloves and goggles is recommended. Respiratory protection or ventilation is recommended under normal handling. When heated, vapors should be ventilated from the work space. Keep container tightly closed and store in a cool, dry, well ventilated area or cabinet. Isolate from incompatibles such as corrosives, oxidizers, or strong reducing agents.

Crystalbond[™] 590-S Stripper

This is an environmentally safe, water dispersible, powder concentrate prepared primarily for use with Crystalbond 590 and other mounting waxes. It can also be used to remove silicones, greases, oils, soils, finishing compounds, and normal contaminants.

Features

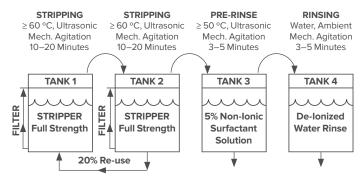
- Water Soluble
- · Non-Reactive with Metals
- Biodegradable
- Non-Flammable

Usage

Add 6–8 ounces (170–225g) of 590-S powder concentrate to each gallon of water and allow to dissolve completely. Heat solution to 120–160 °F (50–70 °C) and immerse parts for a minimum of 5 minutes until the wax dissolves. Use an ultrasonic system for best results. Replace 20% of the stripper with new material as adhesive residue begins to concentrate in the stripper. Refer to process diagram for a suggested cleaning procedure.

Rinsing

A stepwise, warm rinsing process is recommended after removing the adhesive. Rinse in a dilute, non-ionic surfactant or liquid detergent system, followed by a final rinse in deionized water to eliminate water spots due to hard salts and contaminant re-deposition.


Compatibility

This stripper is non-reactive with ceramics, glass and metals such as brass, copper, iron, and silicon. It is reactive with strong acids.

Handling and Storage

This stripper is biodegradable and inert. It is a caustic material, so gloves and eye goggles should be used for personal protection. Keep container tightly closed and store in a cool, dry, well ventilated area or cabinet. Isolate from incompatibles such as strong acids.

Suggested Process Diagram For Cleaning

HIGH TEMPERATURE TAPES

Technical Bulletin A10

PYRO-TAPE™ 682-TB THERMAL BARRIER CERAMIC TAPE

Pyro-tape[™] 682-TB tape is a woven silica fabric tape with temperature resistance as high as 2500 °F used to offer thermal insulation for pipes. Pyro-Tape[™] 682-TB has an adhesive backing which is used to ease wrapping around pipes. The adhesive burns off at 275 °F, and the tape is secured to the pipe in intervals with stainless steel wire.

Pyro-Tape™ 682-TB Heat Barrier Tape

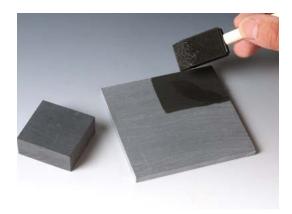
PRODUCT SPECIFICATIONS

Product	Tape Thickness	Tape Width	Thermal Conductivity ¹ BTU-in/hr-ft ² -°F	Silica Content	Roll Length
682-TB1-1	0.030" / 0.76mm	1″	1.0	> 96%	150′
682-TB1-2	0.030" / 0.76mm	2″	1.0	> 96%	150′
682-TB1-4	0.030" / 0.76mm	4"	1.0	> 96%	150′
682-TB2-1	0.054" / 1.37mm	1″	1.1	> 96%	75′
682-TB2-2	0.054" / 1.37mm	2″	1.1	> 96%	75′
682-TB2-4	0.054" / 1.37mm	4"	1.1	> 96%	75′

Reference Notes

The user assumes all risk of use or handling whether or not in accordance with directions or suggestions, or used singly or in combination with other products.

57


¹ Measured at a average temperature of 600 °F.

HIGH TEMPERATURE INORGANIC BINDERS

Technical Bulletin A11

Aremco's Ceramabind™ materials are unique inorganic, water-based binder systems used in the formulation of specialty adhesives, coatings, sealants and putties for applications to 3200 °F. The versatility of Aremco's Ceramabind™ products enables users to blend formulations using most ceramic, glass and metal-oxide powders. Specific properties such as coefficient of thermal expansion, thermal conductivity, dielectric strength, and chemical and moisture resistance can be optimized.

Ceramabind[™] 542 seals porosity in ceramic plate.

PRODUCT HIGHLIGHTS

- 542 An acidic, etching solution which is ideal for use in adhesive systems for bonding non-porous ceramics and glass. Stable when mixed with copper. Reacts with bases such as carbonates, oxides and hydroxides of alkali metals.
- A basic solution which is highly compatible with most ceramic and metal powders. Good wettability and tack, and excellent acid resistance after curing. Extremely moisture resistant after a high temperature cure. Sets up in thick cross-sections when properly formulated.
- 643-1 A basic solution compatible with most ceramic and metal powders. Excellent binder for producing high temperature protective coatings and refractory and chemically resistant adhesives and patching materials. Fully cures at low temperatures and sets up in thick cross-sections when properly formulated.
- 643-2 Similar to 643-1. Excellent for formulating thin coatings that set at room temperature and can be raised rapidly to high temperatures.
- 644-A An acidic, colloidal alumina binder developed for mixing with sized refractory flours and grains to produce high temperature refractory coatings for ceramic fiber boards. Used as a superior standalone system to rigidize refractory fiber shapes.

- 644-S A colloidal silica aqueous solution which produces high adhesive strength. Ideal for blending with all types of granular and fibrous ceramics. Excellent resistance to temperature, moisture and mechanical shock.
- A basic solution compatible with most oxide and metal powders. Ideal for formulating high pigment-to-binder ratios to produce dense adhesives and coatings. Sets at room temperature to a moisture resistant film and does not require a heat cure. Use only for thin coating systems less than 1 mil thick.
- An acidic powdered binder system used to formulate high strength, hydraulic-setting cements for electrical potting or molding applications. A powder blend is typically formulated by adding one part binder to four parts filler by weight. Water is then added in a ratio of 15–20 parts to 100 parts powder blend by weight.
- 880 High temperature, water-dispersible silicone resin for producing corrosion and moisture resistant coatings and sealing porous ceramics.

TYPICAL PRODUCT SPECIFICATIONS

Product	542	642	642A	643-1	643-2	644-A	644-S	830	875	880
pH	2.5	10.7	10.7	11.0	11.5	4.0	9.0	11.4	2.8	6.5
Specific Gravity, g/cc	1.47	1.41	1.25	1.26	1.27	1.23	1.40	1.20	1.36	1.04
Viscosity, cP	50	370	200	60	30	7	35	10	NA	480
Solids Content, % by weight	40	40	25	30	30	23.5	40	25	100	50
Temperature Resistance, °F (°C)	3200 (1760)	3000 (1650)	3000 (1650)	3000 (1650)	3000 (1650)	3000 (1650)	3200 (1760)	2000 (1093)	3000 (1650)	1200 (650)

APPLICATION GUIDELINES

Mixing & Application

- 1. Liquid binder-to-powder weight ratios of 4:1 to 1:1 are recommended when formulating adhesives, coatings and pastes. Powder binder (875) to filler ratio of 1:4 is recommended.
- Blend powder slowly into binder until desired viscosity is achieved. Vacuum degas as required to reduce entrapped air.
- 3. Apply mixture to clean surfaces. Extremely smooth surfaces are difficult to wet and should be sandblasted, etched, or slightly oxidized wherever possible. Porous substrates tend to absorb and separate the binder from the powder; these substrates should be pre-coated with the binder only prior to applying the mixture.

Curing

Ceramabind[™] 542

- 1. Air dry at room temperature for 1–2 hours.
- 2. Heat cure at 200 °F for 1-2 hours.
- 3. Heat cure at 500 °F for 1-2 hours.
- 4. Final cure at 700 °F for 1 hour for maximum adhesive strength and moisture resistance.

Ceramabind[™] 642, 642A, 643-1, 643-2

- 1. Air dry at room temperature for 1–2 hours.
- 2. Heat cure at 200 °F for 2-4 hours.
- 3. Heat cure at 350 °F for 1–2 hours.
- 4. Final cure at 500 °F for 1 hour.

Ceramabind™ 644-A, 644-S

- 1. Air dry at room temperature for 2-4 hours.
- 2. No heat cure is required if substrate is ramped slowly at ~200 °F per hour to the operating temperature.

Ceramabind™ 830

- 1. Air dry at room temperature for 1–2 hours.
- 2. No heat cure is required.

Ceramabind™ 875

- 1. Air dry at room temperature for 1–2 hours.
- 2. Heat cure at 200 °F for 2-4 hours.
- 3. Final cure at 250 $^{\circ}$ F for 2–4 hours.
- 4. Note: This binder can also be set at room temperature in 16–24 hours without heat curing.

Ceramabind™ 880

- 1. Air dry at room temperature for 1–2 hours.
- 2. Final cure at 450 °F for 1 hour or 480 °F for 45 minutes.

Storage

Unopened containers have a six-month shelf life when stored at room temperature. Make sure opened containers are capped securely to prevent evaporation. Place a plastic film in between the cap and container to prevent air leakage. Store containers between 45 °F and 95 °F.

CERAMABIND™ COMPATIBILITY CHART

Product	542		643-1 / 643-2	644-S	644-A	830	875	880
Aluminum	R	S	R	S	R	S	R	S
Aluminum Oxide	S	S	S	S	S	S	S	S
Aluminum Nitride	R	S	S	S	S	S	S	S
Boron Nitride	S	S	S	R	S	S	S	S
Brass	S	S	S	S	S	S	R	S
Bronze	S	S	S	S	S	S	R	S
Chromium	R	S	S	S	S	S	R	S
Cobalt	R	S	S	S	S	S	R	S
Copper	S	R	S	S	S	S	R	S
Dolomite	S	S	S	S	S	S	S	S
Inconel	S	S	S	S	S	S	S	S
Indium	S	S	S	S	S	S	R	S
Indium Oxide	S	S	S	S	S	S	R	S
Invar	S	S	S	S	S	S	S	S
Iron	R	S	S	S	S	S	R	S
Iron Oxide	R	S	S	S	S	S	S	S
Magnesium Oxide	R	S	S	R	S	S	R	S
Manganese Dioxide	S	S	S	S	S	S	R	S
Mica	S	S	S	S	S	S	S	S
Molybdenum	R	S	S	S	S	S	S	S
Mullite	S	S	S	S	S	S	S	S
Neodymium Oxide	R	S	S	S	S	S	R	S
Nickel	R	S	S	S	R	S	R	S
Nichrome	S	S	S	S	S	S	R	S
Silicon Dioxide	S	S	S	S	S	S	S	S
Silicon	S	S	S	S	S	S	R	S
Silicon Carbide	R	S	S	R	S	S	S	S
Stainless Steel	R	S	S	R	S	S	S	S
Tantalum	R	S	S	R	S	S	S	S
Titanium	R	S	S	R	S	S	S	S
Titanium Diboride	R	R	R	S	S	S	R	S
Titanium Dioxide	S	S	S	R	S	S	S	S
Zinc	S	S	S	R	S	S	R	S
Zirconium Carbide	R	S	S	S	S	S	S	S
Zirconium Diboride	R	S	S	S	S	S	S	S
Zirconium Oxide	S	S	S	S	S	S	S	S
Zirconium Silicate	S	S	S	S	S	S	S	S

Key

S = Stable R = Reacts

Safety

Read Material Safety Data Sheet carefully prior to use. All Ceramabind™ products are water-based materials which can be washed from the skin, in the uncured state, with mild soap and warm water. Prolonged skin contact should be avoided to prevent irritation. If any material contacts the eyes, flush continuously with water or neutralizing solutions, then consult a physician immediately.

DISPENSING TOOLS & MIXER

Technical Bulletin A12

Aremco offers a good selection of mechanical and pneumatic dispensing tools which are tailored for its ceramic and epoxy-based products.

TOOLS FOR ONE-COMPONENT CERAMIC SYSTEMS

Syringe and cartridge-style systems can be used with Aremco's ceramic and ceramic metallic high-temperature systems.

Two standard 30cc syringes are offered, one for manual use, the other for use with a mechanical dispense gun.

A standard 6 oz. (173cc) high density polyethylene cartridge with $\frac{1}{4}$ NPT female threads is also offered. Manual and pneumatic hand guns, and plastic and stainless steel needles are also provided.

All metal and plastic components are easily reused since Aremco's ceramic and ceramic-metallic products are all water-based systems.

Syringe Options

8000 8100	30cc Manual Syringe with Plunger and Tip Cap Squeeze Bottle, 9 oz.
8200 8201	30cc Mechanical Syringe Gun 30cc Barrel, Plunger and Tip Cap Kit
8202	30cc End Cap

Cartridge Options

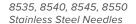
8500	Manual Hand Gun
8510	Pneumatic Hand Gun
8515	6 oz. Cartridge
8516	Plunger
8517	Rear Cap
8518	Tip Cap
•••••	
	Plastic Nozzles, ¼ NPT
8525	1/16" Orifice, 4.0" Long

Stainless Steel Needles, 1/4 NPT × 2.5" Long

8535	8 Gauge (0.128")
8540	10 Gauge (0.102")
8545	12 Gauge (0.081")
8550	14 Gauge (0.064"

8530 1/8" Orifice, 4.0" Long

8200 30cc Dispense Gun



8500 6 oz. Dispense Gun

851X 6 oz. Cartridge, Plunger, End Cap & Tip Cap

992X Nozzle Adapter and Needles

TOOLS FOR TWO-COMPONENT EPOXY SYSTEMS

A standard 50ml dual barrel cartridge is offered for Aremco's High Performance 1:1 Epoxy Systems. Most 1:1 products described in Technical Bulletins A7 and A8 are offered in pre-packaged 50ml cartridges. Part numbers for dispense guns, nozzles and needles are provided below.

9700	Mechanical Dispense Gun				
9850 9900	Hand-Held Plunger Un-Filled Dual Barrel Cartridge (25ml/barrel) Including (2) Pistons and Tip Cap				
9905 9910	Static Mixing Nozzle, 3.5″ Static Mixing Nozzle, 6.0″				
9920 9921 9922 9923 9924 9925 9926	Mixer-Needle Adapter Needle, .063" ID × ½" L Needle, .047" ID × ½" L Needle, .033" ID × ½" L Needle, .023" ID × ½" L Needle, .016" ID × ½" L Needle, .010" ID × ½" L				

9700 50ml Dispense Gun

Larger cartridge sizes including 75ml, 200ml and 400ml are available upon request.

MIXER FOR ONE- AND TWO-COMPONENT SYSTEMS

Aremco offers the Model 7000 low-cost, heavy duty, air operated mixer ideal for mixing pint, quart and gallon containers.

PRODUCT HIGHLIGHTS — MODEL 7000

- Easy to Setup
- · Heavy Duty Construction
- Compact Design
- Rubber Coated Clamps to Accommodate Pint, Quart & Gallon Containers
- Air Operated
- Rapid Mixing for Adhesives & Coatings (Typically 1–2 Minutes)
- Includes Oiler

Model 7000 Mixer

PRODUCT SPECIFICATIONS — MODEL 7000

Capacity	1.0 Gallon
Air Inlet	1/4" NPT
Air Consumption	1.35 CFM
Air Pressure	90-120 PSI
Speed	1400 Cycles/Minute

ACCU-COAT™ SCREEN PRINTERS

Technical Bulletin E1

Aremco's Accu-Coat™ Screen Printers offer the finest technology for precision screening of electronic components and other materials up to 24". Accu-Coat™ printers represent the best price/performance ratio throughout the industry, providing the most accurate, reliable and cost effective solution for your screen printing needs.

TYPICAL APPLICATIONS

- Co-Fired Ceramic Packages
- Multilayer Hybrid Circuits
- Liquid Crystal Displays
- SMT Boards
- Piezoelectric Thick Film Devices
- · Thick Film Resistors & Capacitors
- · Silicon Solar Cells
- Ceramic Brazing
- · Instrument Panels
- Flexible Circuits

Accu-Coat™ Model 3230-D semi-automatic screen printer with microprocessor based controls and optic alignment system with a maximum 9" x 9" print area.

PRODUCT HIGHLIGHTS

Print Repeatability

Each Accu-Coat[™] Screen Printer is based on a high precision two- or four-post die set which positions the print head directly above the part. The print head travels to and from the work in a single axis with a print repeatability of $\pm .0003''$, guaranteed over millions of cycles. An additional attribute of this design is that both substrates and tall parts such as ceramic rings and tubes can be accommodated since a clearance of 6''-8'' between the print head and stage is provided.

Alignment and Registration

Part-to-screen alignment is accomplished using a precision x-y-theta stage with 2" x-y travel and 360° rotation. The theta adjustment is centered to the stage as opposed to competitive models which pivot the part about a corner requiring multiple x-y adjustments before setup is complete.

A low cost optic alignment system is also offered. With this option, during setup the ink is first printed on a sheet of mylar which is supported by an adjustable metal frame above the substrate. The operator then aligns the fixtured board to the printed pattern on the mylar sheet using the stage controls. A 10x or 20x magnification camera and monitor system is also provided to enhance the image when making critical alignments required for fine-pitch SMT boards or hybrid circuits. Multi-camera and split-monitor alignment systems are also available.

On & Off-Contact Printing

Both screens and stencils can be utilized with the Accu-Coat™ printers. Screens are used for off-contact printing where the squeegee deflects the screen in order to contact the substrate. Stencils are used for on-contact printing in which case the stencil is in direct contact with the substrate. In both on- and off-contact printing, the distance between the screen or stencil and the substrate is controlled easily to within .0005″ using a "Z-stop" mechanism.

Accu-Coat™ Model 3230-B bench-top screen printer.

Controls

Accu-Coat™ screen printers are truly simple machines to operate. The user interfaces with the equipment through an easy-to-use control panel which provides five modes of operation. All modes are pre-programmed into a microprocessor. Modes include setup, print-flood, flood-print, and single and double print with paste hopover.

When switched to Setup mode, the user can independently control each drive cylinder in order to set snap-off distance, squeegee pressure, print speeds and print limits. These setup controls are described as follows:

Print Head Up-Down This is used to set the snap-off distance.

Squeegee Up-Down This is used to set the squeegee downstop (screen deflection) and squeegee pressure.

Squeegee Forward-Away This is used to set the squeegee travel limits and squeegee speed.

Vacuum On-Off This is used for temporary part hold down.

All automatic modes of operation are software-defined and custom print modes and alternative delays are easily provided. Various options such as a squeegee speed timer, multiprint mode (primarily used for co-fired ceramic via-filling applications) and cycle counter are also available.

Reliability

Accu-Coat™ Screen Printers are extremely rugged tools utilizing reliable industrial components and modern controls. A detailed user manual and diagnostics are provided with every shipment. Most of all, Aremco enjoys a three decade history of screen printer manufacturing and over 1,000 units in the field in Europe, Asia, Middle East, Canada, Austrailia, and throughout the USA.

ACCU-COAT™ SCREEN PRINTER SPECIFICATIONS

Accu-Coat [™] Model	3230-BL	3230-B	3230-D	3240	3260	
Max Print Area	9"×9"	9"×9"	9"×9"	14" × 14"	20"×20"	
Screen Frame ID	12" × 12"	12" × 12"	12" × 12"	16" × 16"	24" × 24"	
Frame Mounts	13" × 13"	13" × 13"	13" × 13"	17.5" × 17.5"	26" × 26"	
Max Part Height	6"	6"	6″	8″	8″	
Print Repeatability	± 0.0003"	± 0.0003"	± 0.0003"	± 0.0003"	± 0.0003"	
Snap-Off	On & Off Contact Printing	On & Off Contact Printing	On & Off Contact Printing	On & Off Contact Printing	On & Off Contact Printing	
	Single-Point Micrometer Z-Control with 0.001" Dial Indicator Readout	Single-Point Micrometer Z-Control with 0.001" Dial Indicator Readout	Single-Point Micrometer Z-Control with 0.001" Dial Indicator Readout	Three-Point Micrometer Z-Control with 0.001" Dial Indicator Readout	Three-Point Micrometer Z-Control with 0.001" Dial Indicator Readout	
Control System	Pneumatic ¹	Microprocessor	Microprocessor	Microprocessor	Microprocessor	
Control Modes	Independent Pneumatic Switches for Squeegee Up/Down, Print Head Up/ Down & Print Drive In/Out	Setup, Print/Flood, Flood/Print, Single & Double Print with Hopover	Setup, Print/Flood, Flood/Print, Single & Double Print with Hopover	Setup, Print/Flood, Flood/Print, Single & Double Print with Hopover	Setup, Print/Flood, Flood/Print, Single & Double Print with Hopover	
Control Options	Not Applicable	Cycle Counter, Squeegee Speed Timer, Multiprint	Cycle Counter, Squeegee Speed Timer, Multiprint	Cycle Counter, Squeegee Speed Timer, Multiprint	Cycle Counter, Squeegee Speed Timer, Multiprint	
Squeegee Drive	Hydraulic, Variable Speed Control 0–15 IPS	Hydraulic, Variable Speed Control 0–15 IPS, Optional Electric Drive	Hydraulic, Variable Speed Control 0–15 IPS, Optional Electric Drive	Electric Drive, Variable Speed Control 0–12 IPS	Electric Drive, Variable Speed Control 0–12 IPS	
Squeegee Type	Free-Floating 9.5" Squeegee Holder with 3/2" Square Blade and Flood Bar	Free-Floating 9.5" Squeegee Holder with %" Square Blade and Flood Bar	Free-Floating 9.5" Squeegee Holder with %" Square Blade and Flood Bar	Free-Floating 14.0" Squeegee Holder with 3/2" Square Blade and Flood Bar	Free-Floating 22.5" Squeegee Holder with %" Square Blade and Flood Bar	
Options	X-Y-Theta Stage, Vacuum Manifolds, Vacuum Pumps, Optic Alignment	X-Y-Theta Stage, Vacuum Manifolds, Vacuum Pumps, Optic Alignment	X-Y-Theta Stage, Vacuum Manifolds, Vacuum Pumps, Optic Alignment	X-Y-Theta Stage, Vacuum Manifolds, Vacuum Pumps, Optic Alignment	Manifolds, Vacuum	
Dimensions (L \times W \times H)	32" × 24" × 40"	32" × 24" × 40"	40"×30"×64"	40"×30"×64"	48" × 38" × 64"	
Approx. Net Weight (lbs)	150	175	325	450	850	
Service	No Electricals Required; 80–100 PSI at 5 CFM	110 VAC, 60 Hz, 5A or 220 VAC, 50 Hz, 3A; 80–100 PSI at 5 CFM	110 VAC, 60 Hz, 5A or 220 VAC, 50 Hz, 3A; 80–100 PSI at 5 CFM	110 VAC, 60 Hz, 5A or 220 VAC, 50 Hz, 3A; 80–100 PSI at 5 CFM	110 VAC, 60 Hz, 5A or 220 VAC, 50 Hz, 3A; 80–100 PSI at 5 CFM	

Reference Notes

¹ Pneumatic control system can be upgraded to a Microprocessor system if semi-automatic controls are required at a later date.

ECONO-HEAT™ HIGH TEMPERATURE FURNACES

Technical Bulletin E2

Aremco offers a complete line of electric box furnaces from 0.5 to 7.5 cubic feet for applications to 2350 °F. All furnaces are ruggedly constructed and energy efficient, and a wide range of temperature controls are offered for every type of use. Custom features and sizes are also available upon request.

PRODUCT HIGHLIGHTS

- All furnaces are built with 3" premium insulating firebrick and 1" fiber board to permit rapid firing.
- Elements are protected in dropped recessed side wall grooves to provide even heating, longer life, and easy replacement.
- Outer shells are constructed using stainless steel to improve the casing resistance to high temperatures.
- Front-loading and top-loading door styles are offered.
- Alternate power requirements for domestic and international use are easily accommodated.
- Replacement elements are available on a just-in-time basis.
- User-friendly programmable controller.

TYPICAL APPLICATIONS

- · Ash Determinations
- Assaying
- Tempering
- Hardening
- Heat Treating
- Glass Annealing
- Melting
- Fusions
- Dry Precipitates
- Curing Plastics

- Thermal Cycling
- · Carbon & Sulphur Tests
- Cement Tests
- Glass & Enamel Tests
- Jominy Hardness Tests
- Petroleum Tests
- Powder Metallurgy
- Thermocouple Standardization
- Ceramic Tests
- · Ignitions

Econo-Heat™ 2928 Furnace. This model has a work area of 13" × 13 ½" × 8 ¾" and is equipped with a single set point analog temperature controller.

The Econo-Heat™ furnace shown is a custom unit designed for an aerospace manufacturer for use in heat treating. This furnace has a work area of 42" × 42" × 65", and a unique temperature control system consisting of 21 elements each with its own infinite control switch to permit uniform heating of complex shapes.

AREMOD

Econo-Heat™ 2931 Top-Loading Furnace. This model has a work area of 17" × 20" × 17" and is capable of 2400 °F operation using single phase service, 240 Volts and 40 Amps.

TEMPERATURE CONTROLLER

All Econo-Heat™ furnaces are built using the Sentry Xpress 4.0 Temperature Controller by Orton. This controller is a 3-button, 4-segment LED controller that provides 5 built-in speed settings (ramp rate) and the capability to store up to 4 programs with a maximum of 8 segments per program. This flexible, user-friendly controller enables quick and easy programming by the operator.

OPTIONS

Econo-Heat™ furnaces can be modified to include useful features such as view ports, entry holes, or gas intake and exhaust fittings. Larger area and ultra-high temperature furnaces are also available. Contact Aremco's sales engineering department to discuss your requirements.

ECONO-HEAT™ 2900-SERIES FURNACE SPECIFICATIONS

	Size (W″x D″ x H″)		Style		Power		Maximum Temp.	Approx.	Heating Elements	
Model No.	ID	OD (Approx)	Front Load	Top Load	Volts	Amp	Phase	°F (°C)	Weight (lbs)	Per Unit
2927	8.5 × 9 × 8.75	16.5 × 17 × 21.75	Х		120	15	1	2350 (1288)	80	2
2928	13 × 13.5 × 8.75	21 × 21.5 × 21.75	Х		240	15	1	2350 (1288)	110	2
2929	22 × 22 × 13.5	30 × 30 × 26.5	X		240	45	1	2350 (1288)	295	3
2930	15 × 18 × 15	29.5 × 29 × 29		X	240	30	1	2350 (1288)	280	4
2931	17 × 17 × 20	31 × 31 × 31		X	240	40	1	2350 (1288)	300	4
2932	21.5 × 21.5 × 24.5	31 × 36 × 35		X	240	45	1	2350 (1288)	410	5